22 -
222> INDUS 3i Systems

Knovwledge-Based Solutians Innovation Internet Intelligence

Department of Commerce
Intranet Architecture

Prepared for:
Dae Lanser, COR

U.S. Department of Commerce
OCIO, Office of Information Systems

Prepared by:

INDUS Corporation

1953 Gallows Road

Vienna, Virginia 22182
DOC Contract Number: 50CMAA900048
Task Order Number: |SEO0032

Task 2: Standards and Protocols Research

November 13, 2000

Table of Contents

United States Department of Commerce Intranet ArchiteCturé OVEIVIEWeeeeeeeeeeeeeeeeeeeeaaeeeenn.

I 100 [[(0] T

2 OVEINVIEW OF T ATCNITECIUIE.ceeeeeeeeeeeeeeeeeeeeeeeee et et e eeneeees

2.1 ComMMUNICEETON CNANNEIS. ...t e ettt e e e e e e e e e e e eeeeeeasaeeeeeeaeeeeaann

S TINE WA SEIVEN ..ot e e eeeeeeee et e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeeeeeeeeeeeerereeereneeeeenens

B OVEIVIEW ..o ee e e e e e e e e e e e e e e eeeaeeeeeeeeneeeeeeeeeeeeenees

2 T NE DIl ECEONY S VY ...t e e e e e e e e e eeeeeeeeeaee e eeeeeeeeeeeaaaennneeeeeeeeeaaaannnneeeeeeeeaans

4.1 The Directory Management ADDH CAIONeeeeeeeeee e eeeeeseeeenenennnnnnns

4.2 The Group SEIVIiCES A DD I CAII ON......eeeeeeeeeeeeeeeeeeeeeeeeeenesensnnnnnsnnnnnsnnnsnnnsnnnnnnnnnsnnnnns

4.3 SUPPOI SOFTWAIC....c.e e e e e e ettt e e e e e e e e e e eeeeeeeeeeaaaeeeeeeeeeeesaaannnneeeeens

LA HAIOWEAIE.....eeeeeeeeeeee e ssssnsssssssssssssssssssssnssss s mnssmsmnmsssmnmsmnmnmnmnmnmnmnmnmnnn

A S T 1o | 1S3 o O R

7.2 Inter APPlication COMMUNICAEIONceeeeeeeeeeee e e e e e e eeee e e e e e e e e e eeeeeeeeeaaaeeeeeeeseesaaannnees

B OLNET ISSUEBS.....ceeeeeeeeeeeeeeee et ee e ee e et e e et e eeeaeeeeeeeeeeeeeeeeeeeeeeeeeeeenenees

Appendix A: Web-user AUthenti CatioN ProtOCOLeeeeee e e e eee e e e ennns

DOC Intranet Architecture

L NETOTUCE Ottt eeeeeeeeeeeeaeenneeeeaeeessaaannnnennaeens 8

2 REQUITEIMENES.cceeeeeeeeeeste sttt e bt ettt e e e e e e e b e se e e bt s bt e aeese e e e e e s e b e nreenesreeneennens 8
2.1 ProtOCOI REQUITEMIENTS. .. .uviiiiiiieiie s ittt ie e sereee s e s itre e e s ssaseeesessbeeessssseeessssaeessassbesessssssssessans 8
2.2 Web Browser REQUITEIMENLS........ccceueruireeerieriereeiessesee s see e sse s e s ssesessessessesessesesnessesens 8
2.3 ApPlication REQUITEIMENTScceeeeieieriesie sttt r e e sresne e 9
2.4 AuthentiCator REQUITEIMENTS........ceiiiieriirie st 9

L= 11011070 oo TSSOSO 9

4 PrOLOCOI OVEIVIEW. ...ttt sttt st sb st n e et r e sa e s e e st e e e s e nresneenennesne e 11

AN U [10= [[0F= (o SO UR RO 12
5.1 THCKEE SEIVICE. ...ttt r et nr e r e s e renn e ene e 12
5.2 PASSWOIT SEIVICE.eveueeuirtiieieies et st s se et sre sttt b e st s bess e e esesreseesesbesbe e eseabesne e eneneas 24

6 WAP-enabled Applications (WAP Client INErface)........coovrerererienieeieeieseseseese e 27
5.1 OVEIVIBW ...ttt bbbttt e et s bbb e e bt e bt e st et e s et e neeebenbeebeese e e enes 27
6.2 Request INPUL PAramELENS..........cccuviiriririe i 27
6.3 EXECULION......eeueeteteste sttt ettt sttt st he e s e b e se e b e s bt e bt e s e e e e e s e b e sreenenbeeneeae e e enes 28
5.4 OULDULS. ... ettt ettt ettt ettt ettt et s st e et e e s ae e e b e e e aeeebe e saeeeabeesaseebeesaeeebeesaseenseesnreenns 31

S o= 1= S TS ST PRSPPSO 32

8 Encryption and Digital SIQNEIUIEScceireririreeeeieeesre s 34
8.1 Didital SIONAUIES.....c.eeitereietieieeiieeerie ettt sttt st sr e s b bt ae e et e saesbesaesbesaeeneeneens 34

QUNIESOIVEA ISSUES.......eeueueierieeeie sttt se e r e e nenr e e nne s 34

1O REFEIEINCES. ... e r e 34

Appendix B: WAP Client API for the DOC INLran€t...........ccooerererenereeieeieseesee e 35

I 1o (8o o USSP PR PR PRURRRO 35

A K= 11011270 (oo YO USROS 35

S OVEIVIEIW ...ttt e b et bt bt h e ae e s e e e s e e e Rt e bt e bt e Rt e Re e e e e e e e nR e Renr e Reene e e s 35

DOC Intranet Architecture ii

4 THE DITECLOIY AP FOF JAVA .ot eeeeeeens 36

4.1 The AuthenticatioNManager ClaSS........cerereeieerierierie sttt 37
4.2 The BadAPPIHIDEXCEDtION ClBSS.....cccciiieiiieriieceereie e sreee s ssttee e s ssbee s s s sareeassessesessssreeeas 42
4.3 The BadClient| PAAdressEXCEPLIoN ClaSS.......ccuerveerierieererienieesie e seas 42
4.4 The BadSignatureEXCEPLiON CIBSS.......coererieieieriesiesie st 43
4.5 The Protocol ViolatiONEXCEPLiON ClESS......ccveeeriererieriesie e 43
4.6 The RedirectNOTiCKEtEXCEPLON ClESS........coveverrereeierrerieeeiesie e 44
4.7 The RedirectRenewal EXCEPLioN CIaSS........ccceiveivirrirerinesieseseeee s 45
4.8 The RedirectRequiredEXCEPLioN ClaSS........ccueiieireriirieriniesiesiesee e 45
4.9 The RedirectTOSEFEXCEPLION ClaSS......ccvrveierierrereeeriesree e 46
4.10 The TiCKELSEIVICE ClBSS.....cueiueeruerieieieeiesresesies et sr e s e e b b e b sn e ene e 46
S The WAP Clent API fOF PEFl.......oo e 48
5.1 The AuthentiCatioNMaNAQEr ClESS......cceiicveiiiieieiie e serree s e e s st e e s s s sbae e e s sereeeesans 49
5.2 The BadAPPIIDEXCEPLION ClBSS.......cueiuireeerieriirieesiesteseee st ssesre e e s e 54
5.3 The BadClientl PAJdressEXCEPRLION Cl8SS........coerveieerierieriesresiesieeeeee e 55
5.4 The BadSignatureEXCEPRtION CIBSS.......ciiiiirieriirieeieiiesie sttt 55
5.5 The Protocol ViolatioNEXCEPLiON ClaSS........cccvirreerirreeeesiesieesie e esse s 55
5.6 The RedirectNOTiCKetEXCEPLION ClaSS.......cvierereeieriese s 56
5.7 The RedirectRenewal EXCEPLiON CIaSS........coiirerierierienie e 56
5.8 The RedirectRequiredEXCEPRtiON ClESS.......ccoovrrirreerierreeeese e 57
5.9 The Redirect TOSEIfEXCEPLION ClSS......ccveiveeriieeerierieeeesie e sne s 57
5.10 The TICKEISEIVICE CIBSS.....ccueeueeeeieriesieste sttt n e b e ne e 57
6 The WAP ClIent APLFOF PHP ...ttt 60
6.1 The AuthenticatioNManager ClESS........cceiererererieeeierreresiesre st en s 61
6.2 The TICKEESEIVICE CIaSS......cceeeeierieriieie sttt r e s n e snesreene e enes 67

DOC Intranet Architecture iii

Appendix C: DOC Intranet Cryptograpny OVEIVIEWeeeeeeeeeeeeeeeeeeeee e eeeeeeeee e e e e e e e e eeeeeeeeeens 69

L INEFOQUCTTION. ...ttt e e b bt b e bt e e e e e e e b e nn e e benreeneeneeneas 69
A B Lo L= IS o = (1= 69
3 Encoding for HTTP TranSMiSSION.coeuereerrereeersesseseesesseseeessesseessessessesessessesssesssssesessenes 69
A REFEIEINCES. ...ttt ettt b et b e bt e bt h e a e e e e R Rt R e R e Rt Re e s e e e R e nRenReenenneene e 70
Appendix D: Directory Schema for the DOC Intranet Directory ServiCe........cooevevererereeene 71
L INEFOTUCTION. ..ttt b et b e e e s nr e s et bt e ne e e nennenne e enennas 71
P2 K= 10011100 oo YRS 71
S OVEIVIEIW ...ttt ettt e bbbt h e h et e e e b e s b e b e sb e e bt e R e e Re e e et e b e eR e bene e bt e ne e s 73
3.1 DIir€CtOry SEIVICE ACCESS......cceeuereeeuesresseseesessessesessessessesessessesssesressesessessessssessesnesessesnes 73
3.2 Directory Service OrganiZatiONccuervereeerrinreesiesreseeesse e see e s s e sreseeeeseseas 73
3.3 COMMON ATEIDULES. ..ottt 74

AN o] Loz (o T = 11 = 74
4.1 AOCAPD ENITES....c.eceeeeiieeeeee ettt b e b b sn s e 74

S PEOPIE ENLIIES......eeeeeeet ettt s e e b r e r e e n e nes 77
5.1 dOCPEISON ENIIIES.....c.eiviieitieieeieeee ettt sttt e et bbb st e e e nn e b e saesbesaeene e ens 77
5.2 OCAPPUSEN ENIIESeeviieieeeeieetesie st eb s n e sn e ene e 82

6 GrOUPS ENLIIES. ...ttt bt e e s nenr e nenneeneean e 83
6.1 TYPES Of GIOUDS. ... eeveeeueeueeueeeeteste st st see ettt se e e e s e beseesbesaesbesseese et e s e b e sbesbeseeeneeseeneenes 83
6.2 OrganiZatioNal GIOUDSc.uerreuerrerrereeierressesessessessesessessesessessessesessesreessessessesessesnesesessens 83
6.3 AOCGIOUD ENLIES........civieeieeiiieeeiest ettt et n e n e eneene 84

T REFEIENCES ...t b et b e bttt e e e e bbb nn e ne e e 86
Appendix E: Directory APl for the DOC Intranet DIirectory SErVICE......ouvvvvvveeeeiecveeeeesieeee e 89
L INEFOTUCTION. ...ttt sttt b et b e e e et sb e s et bt e b e e ene e b e nn e e ene e 89
P2 K= 1001100 oo V2SSO PT PO 89

DOC Intranet Architecture iv

S OV VIO <o e et e e e e e e e e e e eeeeeeeeee e e e aneeeeeeeeeeaaaa———reaeeeeaaaaa———aaaaaeaaans 90

3.1 USING the DITECIONY APl ...ttt 90
3.2 The dOCDIrECLONY.CON FIlE.....eeeieiieeiie ettt e st e e s e e s e s bae e e s sesreeeeeans 90

4 The DireCtory API fOr JAVEAcoviveeriiieeeesie et 91
4.1 The DOCDITECLONY CIESS.....c.eeiueriiaieriestesiesiese et nesn e 91
4.2 Obtaining the DOCDITECIONY ClaSS.......citrereeierieriesie sttt 91
4.3 Retrieving ApP INfOrmation iN JAVAL........eeereeererieeriesieeee e 92
4.4 Retrieving Person INformation iN JAVA.........ccccveveerererineseseseeee s 92
4.5 APPUSEN INFOIMALTON......coueieiieiieste sttt sttt e b e e 96
4.6 Retrieving Group INformation iN JAVAcceerereeereneeeesieseeese e 97

5 The Directory APL fOr Perl........oo e 101
5.1 The DOCDITECIONY ODJECL.....ccueeueeieiertesteste sttt 101
5.2 Obtaining 2 DocDIrectory HANAIE.......coeiieeeiie ettt eve e s 101
5.3 Retrieving App INformation in Perl...........coiiiicc e 101
5.4 Retrieving Person INformation iNPErl............coeeeeieieniie e 101
5.5 APPUSEN INFOIMBITON......cueiiieieeeeieieste sttt bbb e b e 103
5.6 Retrieving Group Information in Perl..........ccovieiiieieeeereee e 103

6 The Directory API fOr PHP........oeeeeee e 105
6.1 The dOCIireCtory ODJECLcueieieieriesie ettt s 105
6.2 Obtaining & docdirectory Handlecooeeierereeineeeees e 105
6.3 Retrieving App INfOrmation in PHPcc.cciiiiiieeseeeeesee e 105
6.4 Retrieving Person INformation iNPHPccooiiiiiinieeeeeee e 105
6.5 APPUSES INFOIMBLION.....uviiiiiiiiieieeiiiee et ee et e e s s e s s s b e e e s ssbr e e e ssssbeeesssbseesssssransssans 107
6.6 Retrieving Group INformation in PHP ..ot 107
Appendix F: DOC Intranet Inter-Application Communication Protocol...........c.ccoerererereenees 111

DOC Intranet Architecture %

L INETOTUCE ON.... et e ettt e e e e e e e e e et eeeeeee e e e e e e eeeeeeeeeeeaaeannnnneeeeeeesaaannnees 111

2 REQUITEIMENES. ...ttt sttt eb et e e e e e s e e b e sb e e heeae e e e s e s e s b e sneebesreeneeneennas 111
2.1 DOCIACP Client Application REQUITEMENESeeviiiiueeieiieeeeie s eereeeeesrreee s ssvreeesssveees 112
2.2 DOCIACP Server Application REQUIFEMENEScovveereriereeesierieresie e 112

= 1010111000 USSR U U PPTUPURORPRN 112

A OVEIVIEIN ...ttt e et b e bbbt a e st e e e e £ e s e e e Rt s R e e bt e bt e st e ae e s et e b e e b e nbeebesaeeneeneennas 113

5 ProtOCOI DEFINITION. ... veeeueitereeeeieriese ettt n e sn e ene e 114
5.1 TRE DOCIACP REUESL.....ccteiueiieieieeiesteesie sttt et s s s s sbe st saeesaeseesneenreas 114
5.2 The DOCIACP AuthentiCation SChEME..........cocerierierire st 115
5.3 TheE DOCIACP RESDONSE.......ceueiuieieieriestesiesieseeeestessestessessessessesseensessessessessessessesseenes 117

6 Selection Of NONCE VAIUES.........c.coviirieieirie et 117

7 Catal0g SErVICE DEFINITION.....cceeeeeetereesie sttt sr e see e 118

B ISTUBS.. .ttt E et R e e R e e e R e Rt e R e Re e R e e nenae e neeneennere s 121

O REFEIEINCES. ... r e e 121

Apendix G: DOC Inter-Application Communication Protocol APccccoerenirenerenieneennns 122

I 1o (8o o TSSO PR PSR 122

2 TEIMINOIOQY - ttveueererereeuerressesessessessesessesseesseabe s eseasesseseesess e e eaesae s eseebease e eseabensesenrenneneeneneas 122

S OVEIVIEIW ...ttt e b et bt h s e e e e e e s R e R e e Rt e Rt e aeeas e s e s e e e nn e R e nn e ne e e e 122
3L USING thE TACP APIS ..ottt bbbt n b et 122

4 The IACP Clent APLFOr JAVA.......cooiiiiirierieeeeee ettt 123
4.1 The |aCPCIIENE ClBSS.....ueieeueriereeerierieseee ettt b e b e e e b e e b n e s s e e eneene s 123
4.2 The |aCPRESPONSE ClESS......c.ceiueiirierieeiieie ettt sttt r e sr e r e b s e s 128
4.4 The XMl aCPRESPONSE ClIASS......uuviiiiiiieieeiiiriieeesireee s ssrare s s sssaeeessssaaeeesssbseeessssreeesssnens 131
4.5 The StringlaCPRESPONSE CIESS.......couereruirieieiriesie ettt enesn s 132
4.6 The 1aCPSEIVICE ClBSS.....c.ceieeeeriesiesieste sttt sn e b sr e nes 133

DOC Intranet Architecture vi

4.7 The BadContent TYPEEXCEDH ON ClASScooeee e e e e e e e e e e ae e 136

S The IACP SerVer API fOr JAVA......cccviiiieiiriereeieeee et 137
5.1 The |aCPHANAIE! ClIASS.....uuiiiiieieieiiiciiiee ettt eere e e e st e e s s s aa e e e s s ba e s s s sbbeeessearaeeessssreeeas 137
5.2 The NotInitialiZEAEXCEPLiON CIESS......c..erveerrereeeeiriesieesiesre et 144

6 The IACP Client API fOr PeX ...ttt s 145
6.1 The 1aCPCHENE ClESSeiueeueeeeiesiesie sttt st b et e et e b e e eneas 145
6.2 The |aCPRESPONSE CIESS........eoveueriirreieiesresee st r e sn e e sn e es 149
6.3 The XMIIAaCPRESPONSE CIESS.......ccererriererierieeeeiesee et sre e enees 152
6.4 The 1aCPSEIVICE ClESS......ceueiueeieierie sttt sttt st be st se e e et sre b sbe e e eneas 153
6.5 The BadContentTYPEEXCEPiON ClESS........ccvrerreeeirieeeeries e 154
6.6 The XmIParseEXCENtiON ClaSS......ccuciueuerririeerie ettt 155
6.7 The 1acpConnectiONEXCEPLION ClaSScoereeieierieriesiesie et 155
6.8 The lacpAuthenticati ONEXCEPLION ClIaSS.....cciivuviieiiireieecsreee et s e s srre e s s ssraee e 155

7 The IACP Server APLfOr Pefl.......ooo et 156
7.1 The 1aCpHANAIEr ClBSS......c.ciiiiieieierieeie et 156
7.2 The lllegal ArgumentEXCEPtion ClaSS.......ccurerieriererie st 163
7.3 The NotInitialiZEJEXCEPtiON ClESS......c.eirireeerierieeeiesiesee st 163

8 The IACP Client API fOr PHPooiieeieeeee ettt st s 164
8.1 The 1aCPCHIENT ClBSSiiuiiuerieeieieie ettt sttt e e s a e b e b b enes 164
8.2 The IaCPREFPONSE ClESS......c.veeriireeeiesrerieesre st n e nne s 168
8.3 The XmIIaCPRESPONSE ClESS.......ccveeeuerrerieerieseeseeesie st see s e e s e ene s sre e ese s 171
8.4 The 1aCPSEIVICE ClBSS....c.ueiueeueeieeeie ettt et e e s r e b e b enes 171

SN VAN O RS = VIS AN I () i | PSS 174
9.1 The 18CPHANAIEN CIBSS......c.eoeeereirreeeiesre ettt be e e e e e b sr e s ene s 174

1O REFEIEINCES. ...ttt e e s e bbbt e e e n e b nn e r e e ne e 181

DOC Intranet Architecture vii

United States Department of Commerce Intranet
Architecture Overview

1 Introduction

This document explains the high level architecture for the Department of Commerce intranet.
It explains the primary components of the system, how they are organized onto physical
machines, and how they communicate with each other. It details what support software each
component needs in order to operate correctly.

This document does not provide hardware specifications for the various server machines
mentioned. It does not attempt to specify the design details of the various sub-components of
each system component. Internal design issues are occasionally mentioned to aid in the
understanding of the overlying architecture.

2 Overview of the Architecture

The DOC Intranet can be divided into large architectural components and the communication
channels among them. Figure 1 depicts the main components of the intranet:

1) WAP server for authentication,
2) Directory server to store user and application information, and
3) One or more application servers.

A primary application on the intranet is the intranet portal. It was chosen to represent a
typical application in this diagram. Figure 1 shows the three components arranged on top of
three server class machines. Within each machine are the various software sub-systems that
are required for the component to function correctly within the intranet. Each larger
component could be one or more machines working together to provide the given
functionality. The dotted lines in Figure 1 show possible machine divisions.

Not depicted in Figure 1 is the user who accesses the intranet via a web browser. The
browser must supports cookies.

2.1 Communication Channels

The solid arrow-tipped lines indicate communication pathways and protocols among the
various pieces of the system. Both intra-machine and inter-machine channels are depicted.

There are three primary communication protocols used within the intranet:
1) WAP — Web user Authentication Protocol

2) |ACP — Inter Application Communication Protocol

DOC Intranet Architecture 1

3) LDAP — Lightweight Directory Access Protocol
4) AJP — Advanced Jserv Protocol

WAP and IACP are proprietary and are discussed in detail in Appendix A: Web-user
Authentication Protocol and Appendix F: DOC Intranet I nter-Application Communication
Protocol respectively. Both sit on top of the HTTP protocol. LDAP is an industry standard
for communicating with a hierarchical text-based database. AJP is a protocol developed to
facilitate communication between a web server adapter (in this case mod_jserv) and a servlet
container (in this case Tomcat).

In the sections below, each component is addressed in more detail including what support
software is required and how the component might be laid out across several different
physical computers.

3TheWAP Server

3.1 Overview

The WAP server islabeled on Figure 1 aslogin.doc.gov. The WAP server worksin
conjunction with the Directory Service to provide the authentication mechanism for the
intranet. It provides for the single sign-on capability for the intranet.

Typically, users do not contact the WAP server directly; rather, they access a departmental
application. If the user has not been authenticated, the application sends a redirect to the
user’s browser pointing it to the WAP server. The WAP server then provides the user with a

login page.

The user enters their username and password across an SSL connection to the WAP server.
The WAP server looks up the username in the Directory service component across an LDAP
connection. The Directory service returns the user’s 11D number. This number is then used
to verify the user’s password in alocal disk file. Upon successful login, the WAP server
redirects the user back to the application with an authentication cookie. See the Web-user
Authentication Protocol document for a detailed discussion on how this authentication
OCCUrsS.

3.2 The WAP Password File

The WAP server maintains alocal disk file that contains three fields:

1) User's [1D number,
2) User's encrypted password, and
3) Enabled bit.

The user 11D number is a unique number assigned to every user on the intranet. AnlID is
created by an administrator when a user is added to the system. It should never change. The

DOC Intranet Architecture 2

passwords are encrypted using the NBS DES algorithm (used by Unix) or another secure
encryption algorithm. The last field in the file is a boolean value representing whether or not
the account has active status. Disabled accounts cannot be logged in to.

3.3 Security

Because the WAP server is the central security system for the Intranet, the machine it runs on
must to be as secure as possible. A disk file resides on the server that contains al of the
intranet users’ 11D numbers and their encrypted passwords. Anyone with access to this file
can potentially infiltrate the intranet.

Only SSL connections can be made to the WAP server to prevent the sniffing of user
passwords when they are sent from the user's browser across the intranet (or internet) to the
WAP server. After auser'sinitia login, their password never needs to be sent across the
network again.

3.4 Support Software

The WAP authenticator is a Java servlet. It needs a servlet container in order to run.
Additionally, the authenticator is accessed via the WAP protocol that sits on top of the HTTP
protocol. Therefore, the WAP server machine needs to have a web server running on it to
provide the entry point for requests for authentication from the various intranet applications.

Figure 1 shows the WAP application as a servlet inside a servlet container communicating
with aweb server with a servlet adapter. AJP isused over this communication channel.

35 TheHardware

The WAP server machine is shown in Figure 1 as asingle machine. It is possible to
distribute it across two or more separate physical machines. The dotted line in the figure
indicates the division point. The servlet container can exist and execute on one physical
machine and the web server and jserv adapter may exist on another. In a heavily loaded
environment, the web server depicted may actually be several web servers (each on a
separate machine) all configured to operate together. The same load-balancing mechanism
can be arranged for the servlet containers as well.

4 The Directory Server

The directory server contains the directory service application for the intranet. Itislabeled in
figure 1 asdirectory.doc.gov. This service stores information about the intranet's users
including their 11D numbers, contact information, and preferences for intranet applications.

It also stores alternate usernames (aliases) for the user so legacy applications can be accessed
without logging into them separately. The directory also stores information about the various
applications on the intranet such as which applications are trusted and which connections
have to be SSL.

As mentioned, the directory service is an LDAP directory.

DOC Intranet Architecture 3

The directory service is accessed by the WAP server and by applications directly. In order to
access (and maintain) the information in the directory, two applications (servlets) exist that
interface with the service. The first, the Directory Management application, allows users to
access information about themselves and other users. Users can also use this program to
update information about themselves. The second application is the Group Services
application. It isahelper application used by other intranet applications to perform more
complex lookups into the Directory service hierarchical structure.

4.1 The Directory Management Application

The Directory Management application is a Java servlet that allows users to access and
update information in the intranet directory. It is envisioned to have a database backend that
is used to enforce user permissions and roles in the directory. Users have certain roles with
certain access permissions. Users can modify most of the information about themselves and
users designated as administrators can modify information about other users as well.

This application performs simple queries in the intranet directory. For more complex queries
and lookups, this application makes requests to the Group Services application.

Figure 1 shows that the Directory Management application interfaces to the Directory
Service using LDAP and with the Group Services application using IACP.

4.2 The Group Services Application

The Group Services application is aso a Java servlet. However, users do not directly access
this application. It is ahelper application for accessing information in the Directory service
that may not be easily obtained through the LDAP interface. This application is accessed
using the Inter-Application Communications Protocol, IACP (over HTTP).

4.3 Support Software

Both of these applications are servlets and thus are accessed over HTTP. Therefore, both
applications need to be paired with aweb server as well as a servlet container for correct
operation. Figure 1 shows aweb server and a servlet container on the directory server
machine.

4.4 Hardware

The directory component may be distributed anong more than one machine, separating the
servlets and the web servers from each other. Also, the LDAP Directory service could
reside on a separate machine. Again, the dotted lines in Figure 1 indicate these division
points. This component may exist on four separate machines.

4.5 Summary

The Directory Management application and the Group Service application can be thought of
as regular intranet applications. The Group Services application is unique in that most
applications on the intranet will be communicating with it to obtain information about users.

DOC Intranet Architecture 4

5 The Portal Application

The last component depicted in Figure 1 is the portal server (portal.doc.gov). The portal
application represents atypical application in the intranet. 1t performs almost every task that
any other application might perform, so it is a good sample application. It is envisioned to be
amodified version of Jetspeed, the Java-Apache open source portal product. As such, it
needs a servlet container and a web server in order to integrate into the Intranet environment.

The portal server communicates with various applications on the intranet and creates a portal
page of information for alogged in user. As such, the portal application interacts with the
Directory Management application via the |ACP protocol. It also communicates directly with
the directory service to get configuration information about the various applications that are
included in the portal.

6 Other Applications

Other applications behave as the ones aready outlined. Published APIs make the design and
implementation of intranet applications easier. The API definitions are in Appendix B: WAP
Client API for the DOC Intranet and Apendix G: DOC I nter-Application Communication
Protocol API. APIs exist for the three most common web devel opment languages (Java,

Perl, and PHP).

7 Architecture Features
7.1 Single Sign-On
The single sign-on feature of the Intranet is implemented using the WAP server and cookies.

When an application, such as the portal server, is accessed by a user, the application checks
to see if the user has logged in. If the user has not yet logged into the intranet, the application
will redirect the user's browser to the WAP server. The user may log in and be given a
cookie to send to the application. This cookie stores the user's authentication information
and is automatically sent whenever the user accesses an application on the Intranet. This
allows users to log into the intranet once and maintain an authentication cookie around to log
into other applications after that. See Appendix A: Web-user Authentication Protocol for a
step-by-step description of this process.

The important point to note is that the application does not communicate with the WAP
server directly. Rather, the user’ s browser makes a request to the WAP server on behalf of
the application that the user is attempting to connect to.

7.2 Inter Application Communication

Applications are able to communicate with each other viathe Inter-Application
Communication Protocol, IACP. This protocol alows applications that trust each other to
share information about the intranet users. See the [IACP] document for a detailed

DOC Intranet Architecture 5

description of this protocol and the [IACP-API] document for a description of the APIs for
Java, Perl, and PHP for inter-application communication.

8 Other Issues
Hardware requirements must be defined.

Addition of proxy servers should be considered.

DOC Intranet Architecture

Figurel Intranet Components

login.doc.gov
(Linux)

Server

directory.doc.gov

i3 (Linux)
Server
Servlet Container
< LEBAR >
WAP Directory Service
1 }8 7'y 7y
L. . 494 9 [N SR P ———
¥ N !
i LDAP | LDAP
R | == $ervlet iContaiher
]
. , y
Hip——» Apache macl)c?;pfsrrv Group i _
WAP entry Services | Dir Mgmt |4
point 1
LDAP i Y
| b
3
! Y
R
portal.doc.gov .
Linux Dir. Mgmt [T > mod_jserv
() Entry Point e Apache adapter
Server YWY
Servlet Container)
Group Service
Entry Roints
Jetspeed < IAD
A
L.
b
l.:\
_____ DN | & I
v
Portal entry di
point L Liten N mod_jserv
ki » Apache adapter

DOC Intranet Architecture

Appendix A: Web-user Authentication Protocol

Version: 1.0
Revised: 2000.11.12

1 Introduction

This document describes the Web-user Authentication Protocol (WAP). WAP is a protocol that
can be used to authenticate users to untrusted web-based applications over an insecure network.

2 Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119]. An implementation is not
compliant if it fails to satisfy one or more of the MUST or REQUIRED level requirements for
the protocols it implements. An implementation that satisfies all the MUST or REQUIRED level
and al the SHOULD level requirements for its protocols is said to be "unconditionally
compliant”; one that satisfies all the MUST level requirements but not all the SHOULD level
requirements for its protocols is said to be "conditionally compliant.”

For WAP to function, three components are required: a web browser for the user, an application,
and an authenticator. A directory service should be used in conjunction with WAP to provide
user identification to the authenticator and applications.

2.1 Protocol Requirements

This protocol is designed to:

Allow for single-sign-on for al applications using the WAP.

Allow for users to divulge passwords only to an authenticator, never to an
application.

Disalow applications from using any user’s authentication information for
authenticating against another application.

Allow applications, at their own discretion, to provide a “public face” level of service
to users who have declined to authenticate.

2.2 \Web Browser Requirements

The web browser MUST support cookies, as described in [RFC2109]. Cookies allow users
authentication information to persist over multiple applications (one login per session).

The web browser MUST support HTTP Redirection.

The web browser MUST support SSL, as described in [SSL].

DOC Intranet Architecture 8

2.3 Application Requirements

The application MUST support HyperText Transfer Protocol (HTTP), as described in
[REC2616]. HTTP is used to service users requests.

The application MUST support setting and receiving cookies, as described in [RFC2109].
Cookies are one method for passing user authentication information from the authenticator to the
application.

The application SHOULD support SSL, as described in [SSL].
The application SHOULD support public key encryption as defined in [CRY PTO].

An application's level of support for the above requirements will determine the level of security
an application can expect by implementing WAP and using a WAP authenticator.

2.4 Authenticator Requirements

The authenticator MUST support setting and receiving cookies, as described in [RFC2109].
Cookies are used to persist user authentication information across multiple requests from the user
to the authenticator and applications.

The authenticator MUST support HyperText Transfer Protocol (HTTP), as described in
[RFC2616]. HTTP is used to service users requests.

The authenticator MUST support SSL as described in [SSL].
The authenticator MUST support public key encryption as defined in [CRYPTOQ].

3 Terminology
anonymous application ticket

An application ticket that does not include auser 11D. These are provided to users who
decline to supply a username and password, and instead wish to access applications
‘public face'.

application

A system that provides a service to users through an HTML interface viaHTTP, as
defined in section 6.0.

application 1D

The intranet ID (11D) associated with a specific running instance of an application.

DOC Intranet Architecture 9

application ticket

A data element that holds the authentication information for a user. The authentication
information is time-stamped, and contains rights for a user to access a particular
application. Application tickets are stored on a user’s browser as cookies.

authenticator

A specialized application that provides user authentication services to applications, as
defined in section 5.0.

browser, or web browser

A standard web browser, as defined in section 2.1.
CGl variable

A POST or GET parameter used in web requests. See [RFC2616].
cookie

Data that is passed from an application to aweb browser, stored by the web browser, and
returned to an application at a future time. As described in [RFC2109].

directory service

A service that provides user and application information. The directory service also
stores the public keys of al applications.

Intranet ID (11D)

A unique string which identifies an object maintained in the directory service. For the
purpose of this document, 11Ds identify either users or application instances.

legacy application

A application which does not support user identification through the means of the user’s
intranet ID (user 11D).

legacy application username
A login name used by a user to identify himself to a legacy application.
reference implementation

This protocol will initially be developed for the Department of Commerce's Intranet.
Thisinitial product is referred herein as the reference implementation.

DOC Intranet Architecture 10

session ticket

A data element that holds WAP authentication information for a user. The authentication
information is time-stamped. Session tickets are stored on a user’s browser as cookies.

user
A person using a web browser and the authenticator to access one or more applications.
user 11D
The Intranet ID (11D) identifying a user.
WAP username (Intranet username)

A username assigned to a user’ s intranet account. This username can be changed, but is
always associated with the user’s unique user 11D.

WAP password

A password assigned to a user’ s intranet account. The password may be changed by the
user. The password is always associated with asingle user 11D.

4 Protocol Overview

To authenticate users, WAP isimplemented on an authentication server and application servers.
The authenticator authenticates users by WAP username and WAP password over an SSL
connection, provides application tickets to users, and provides applications with the ability to
validate sessions through cryptographic verification of the session ticket digital signatures.

WAP additionally provides a mechanism to time-out user’s session tickets through user
inactivity, and to renew tickets prior to expiration in a method that is transparent to users.

From the user's perspective, an authenticated session usually beings when the user attempts to
access an application with aweb browser. When the application does not find an application
ticket in the set of cookies and CGI variables presented by the web browser, the application will
consider the user to be not authenticated, and will return a redirect to the authentication ticket
service login page.

If the authentication server finds a valid session ticket, it verifies the authenticity of the session
ticket using its own private key to verify the session ticket digital signature, and verifies that the
conditions of use presented in the session ticket are met. The single condition of use listed on
the session ticket is an “expire time” beyond which the ticket is no longer valid. The session
ticket also contains the Intranet ID (11D) for the user.

With avalid session ticket in hand, the authenticator creates an application ticket allowing the
user to talk to the referring application. The application ticket consists of the user’s 11D, the
application’s 11D, the source IP address of the web browser connection, and the renew time for
the ticket. If the application is alegacy application requiring an application-specific username

DOC Intranet Architecture 11

rather than a user 11D, the authenticator looks up the appropriate application username for this
user and this app, and includes it in the application ticket.

This ticket is forwarded to the application via CGI variables and cookies. Upon receiving the
application ticket, the application can verify its authenticity by checking the digital signature
using the authenticator’ s public key.

When presented the login page by the authenticator, the user can elect not to authenticate by
selecting the cancel option. In this case, a special application ticket called an anonymous
application ticket is created. Anonymous application tickets lack both a user 11D field and an
application username field. The authenticator does not create a session ticket when an
anonymous application ticket is created. When presented with an anonymous application ticket,
applications may decide to either reject the anonymous access, or present a “public face’
interface to the user.

5 Authenticator

The authenticator is responsible for user login, providing authentication information to
applications, and renewing session tickets. This functionality is provided by the ticket service.
In addition, the authenticator is responsible for providing a service for adding, deleting and
modifying users and passwords. This functionality is provided by the password service.

Each of the authenticator’s functions is a service accessible through a URL, using HTTP or
HTTPS, HTML forms or CGI variables, and cookies. Both authenticator services are described
in detail.

5.1 Ticket Service

5.1.1 Overview

The ticket service authenticates users by WAP username and WAP password. If the user
authenticates correctly, the ticket service creates a session ticket and an application ticket, as well
as adigital signature for both the session and application tickets. Both the session ticket digital
signature and the application ticket digital signature are created with the authenticator’s private
key. If the user cancels the login, the ticket service creates only an anonymous application ticket
(and application ticket digital signature), but no session ticket.

The session ticket is a simple ticket that is used only by the authenticator during later
authentication requests by the same user. During the initial successful login, the authenticator
returns the session ticket and its digital signature as cookies to the users browser. Later, when
the user’ s browser contacts the authenticator for an application ticket renewal, the authenticator
can verify that the user’s browser has a session ticket with avalid digital signature, and can
check to ensure that the session ticket has not expired. If the session ticket has expired, the
authenticator redirects the user’s browser to a page where the user can re-login. If the session
ticket has not expired, than a new lease is granted to the user’s browser by pushing a new session
ticket cookie (and digital signature) with alater expiration date to the browser. In the same
transaction, a new application ticket (and digital signature) with a later renew date is pushed via
CGl variables to the browser for use by the referring application.

DOC Intranet Architecture 12

The following table defines the content of the session ticket.

Session ticket for mat

Name Value

USER _IID | The user-intranet id uniquely identifying this user on the Intranet

EXPIRE | The date-time stamp when this session is no longer valid

Session tickets are only created when a user correctly submits a valid username and password.
Canceling the login page causes the authenticator to create an anonymous application ticket, but
no session ticket. The session ticket is formatted smply as a list name=value pairs, separated by
the pipe character. For example, a user might have a session ticket of the following form

USER_I | D=36925| EXPI RE=Fri, 31 Dec 1999 23:59:59 GMI

The session ticket and digital signature are returned to the browser with setCookie header lines
of the following form.

Set - Cooki e: SESSI ON_TI CKET_TXT=<pl ai nt ext session ticket>;
Set - Cooki e: SESSI ON_TI CKET_SI G=<sessi on ticket dig. signature>

In addition to the session ticket, the authenticator creates an application ticket for the application
that redirected the user’s browser to the authenticator’ s login page. This application ticket
contains the user’s 11D, the application’s 1D, the IP address of the user’s browser (or proxy), and
the time after which the application ticket needs to be renewed. If the user declines to
authenticate, the USER 11D field is not included. A missing USER_1ID field defines an
anonymous application ticket. If the application is alegacy application requiring a application-
specific username rather than a USER 11D, the generated ticket includes both a USER 11D and
an APP_USER field.

The following table defines the content of the application ticket.

Application ticket for mat

Name Value

USER_IID | The user-intranet id uniquely identifying this user on the Intranet. Thisfield is not
present in anonymous application tickets.

APP_USER | For legacy applications, the username with which this user authenticates to the
application. Thisfield is only included with tickets created for legacy
applications.

APP_1ID The application intranet id uniquely identifying this application on the Intranet

USER IP The IP address from which the browser connected to WAP. May be the browser’s
IP or the proxy server’'s|IP.

DOC Intranet Architecture 13

RENEW The date-time stamp after which the session ticket should be renewed.

The application ticket is formatted as name=value pairs, separated by a pipe character. Below is
a sample ticket.

USER | | D=3692| APP_USER=j ohn_smi t h| APP_I | D=00032| USER_| P=192. 168.
1.128| RENEWE Fri, 31 Dec 1999 23:54:59 GVl

The application ticket is digitally signed using the authenticator’s private key. The plaintext
application ticket and its digital signature are sent to the browser as CGI variables of the
following form.

rm _cooki e=APP_TI CKET_TXT: <pl ai nt ext application ticket>
rnmt _cooki e=APP_TI CKET_SI G <application ticket dig. signhature>

Upon successful authentication, the user’s browser is redirected to the application that initially
redirected the user to the login page. By default, thisis the URL of the referer header line.
However, if the application has provided a RET_URL CGI variable, that value is used as the
redirection page. Applications SHOULD provide the RET_URL CGI variable to positively
notify the authenticator of the redirect target.

Before redirecting the browser to RET_URL or header.referer, the authenticator verifies that the
redirection URL is avalid redirection URL for this application. In the referenced
implementation, this is done by consulting the directory service.

5.1.2 Request Input Parameters

The URL for accessing the reference implementation ticket service is https://login.doc.gov.

The ticket service accepts requests viaHTTPS. The following CGI variables are processed. All
other present CGI variables are included unchanged as CGI GET variables on the response.

CGI Variables processed by the Ticket Service

Name Value

WAP_ANON | A flag indicating that the user has selected the cancel option from the login page.
If thisflag is present, an anonymous ticket will be created for the user.

WAP_USER | The username the user provides to identify himself to the authenticator. Thereis
aone to one relationship between WAP_USER and user IID.

WAP_PASS | The user’'s WAP password.

APP_IID The application intranet id uniquely identifying the refering application on the
Intranet

RET_URL The URL that the WAP server should redirect the user’ s browser to once the
user is authenticated.

DOC Intranet Architecture 14

The ticket service checks for the following cookies to determine if the user is currently logged in.

Cookies accepted by the Ticket Service

Name Value

SESSION_TICKET_TXT | Encrypted Session Ticket

SESSION_TICKET_SIG | Digital signature of the session ticket

5.1.3 Execution

The execution of the ticket service is described using inputs, processes, decisions, and output. A
flowchart representing the flow of execution is provided in the figure on the next page.

DOC Intranet Architecture 15

No

req.cgi.

Receive
HTTPS
Request

req.cookie
SESSION_TICKET_TXT
found?

req.cookie.
SESSION_TICKET_SIG
found?

req.cgi.
WAP_ANON
found?

Yes

Authenticator Ticket

Service Decision Tree
This Decision Tree is followed when
WAP receives a HTTPS
(HTTP over SSL) connection

No

digital

!

signature
correct?

Generate

No —{ Protocol
Violation

Log

Anonymous App
Ticket

WAP_USER
found?

No

req.cgi.
WAP_PASS
found?

Return
WAP_LOGIN
Page

Password
& Username
correct?

No

Return
INVALID_LOGIN
Page

Yes

!

Lookup user [ID
from WAP_USER

User's
WAP account
active?

Expire
time not
exceeded?

Yes

¥

Create Session Ticket

Set Cookie SESSION_TICKET_TXT
Create Session Ticket Signature

Set Cookie SESSION_TICKET_SIG

req.cgi
APP_IID
found?

Yes

May User
access App?

Yes

h 4

Yes Create Application Ticket ——

res.cgi.rmt_cookie=APP_TICKET_TXT:
Create Application Tkt Signature

res.cgi.rmt_cookie=APP_TICKET_SIG:

EXPIRED_LOGIN

USER_APP_DENIED

No

Log
Return Protocol
INACTIVE_ACCOUNT Violation
Page

Return

BAD_RET_URL
Page

l-No

req.cgi.
RET_URL
found?

reg.header
referer set?

Return

Page

e USER_IID
EXPIRE

Return

Page

USER_IID
APP_IID
APP_USER (legacy only)
USER_IP
RENEW

Return
LOGIN_SUCCESS
Page

referer
allowable

Log
Protocol
Violation

Redirect to Redirect to
req.cgi.RET_URL reg.header.referer

Return

BAD_REFERER
Page

DOC Intranet Architecture

16

Commentary on Authenticator Ticket service Decision Tree

Receive HTTPS request

Thisis the starting point for al transactions. A
HTTPS (SSL only) connection is made to the
well-known WAP Authenticator Ticket service
URL.

reg.cookie.SESSION_TICKET_TXT
found?

Check to see if the user submitted a session ticket.

req.cookie.SESSION_TICKET_SIG
found?

Check to seeif the user submitted a signature for
the session ticket. Session tickets are invalid
without avalid signature..

reg.cgi. WAP_ANON found?

Check to see if the anonymous flag has been set.
Thisflag is set when the user declines to
authenticate by clicking the Cancel button on the
WAP_LOGIN page. Anonymous users receive an
anonymous application ticket and no session
ticket.

Generate Anonymous App Ticket

An anonymous application ticket has no
USER_IID field, and no APP_USER field. Users
who have not logged into the intranet receive
anonymous application tickets.

reg.cgi. WAP_USER found?

The authenticator examines the request to see if
the CGlI variable USER_I1D has been included. If
it has not been included, then it is not a request
coming from the login page. Normal processing
ensues.

reg.cgi. WAP_PASS found?

The authenticator examines the request to see if
the CGI parameter WAP_PASS has been
included. If it has not been included, then it is not
arequest coming from the login page. Normal
processing ensues.

Return WAP_LOGIN Page

The user is presented a form that prompts them to
supply username and password. These values are
sent to the authenticator as CGI variables named
WAP_USER and WAP_PASS. Also, acancel
button is present, which when clicked must set the
CGlI variable WAP_ANON.

Password & Username correct?

The authenticator verifies the username and
password match. The password should be stored
in a hashed format to reduce damage if
compromised. The reference implementation will

DOC Intranet Architecture

17

store the hashed passwords, along with user 11D
and account disable flag, in alocal file.

Return INVALID_LOGIN page

This page is returned if the user does not exist or if
the password isincorrect. It should either have a
link back to the login page or aform to resubmit
the username/password information.

Lookup user 1D for WAP_USER

The directory service is queried to find a user
Intranet 1D (11D) matching this username.

User’s WAP account active?

Administrators can disable any user's WAP
account, which effectively prevents the user from
accessing any WAP-enabled account using WAP
authentication. This checks the locally stored flag
to seeif this user’s account has been disabled.

Return
INACTIVE_ACCOUNT page

A page notifying the user that their Intranet login
has been disabled.

Digital Signature Correct?

Using the WAP public key, verify the digital
signature contained in SESSION_TICKET_SIG
againgt the plaintext in SESSION_TICKET _TXT.

Log Protocol Violation

An invalid ticket has been received. All such
attempts should be logged so that administrators

can take appropriate action.

Return A page should be returned to give the user further

BAD_SIG guidance on appropriate actions if the

Page SESSION_TICKET_SIG is not genuine. The
contents will depend on site preferences — users
could be notified that the ticket was rejected, or a
generic ‘Login Failled” message could be
displayed.

Expire Time The EXPIRE attribute is retrieved from the

not exceeded? authenticated SESSION_TICKET. It is compared

with the current time on the server. If the current
time is earlier than the EXPIRE time, then the
session is till valid, and new application and
session tickets should be created for the user. If
the EXPIRE time has elapsed, then the user should
be presented a page noting this, and linking back
to the login page.

DOC Intranet Architecture

18

Return This page notifies the user that their session has

EXPIRED LOGIN timed out due to inactivity, and presents a

Page hyperlink or alogin form that allows them to
reestablish their session.

Create Session Ticket The user has a valid session ticket, and has had

Set Cookie SESSION_TICKET_TXT
Create Session Ticket Signature
Set Cookie SESSION_TICKET_SIG

recent activity as defined by this protocol.
Construct a new session ticket with a new
EXPIRE time. Setup the
SESSION_TICKET_TXT and
SESSION_TICKET_SIG cookie so that they are
pushed to the user’s browser with the next page.

Req.cgi. APP_IID found?

Check the incoming request to see if a CGl
variable named APP _IID isincluded. If itis, then
the user was referred to the authenticator by that
app, possibly due to a application ticket needing to
be renewed, and possibly because the referring app
had no application ticket at al for this user.

May user access App?

Determine if the user has an account managed by
WAP for this application. This processis
considered to be implementation dependent. The
reference implementation will consult the
directory service to make this determination.

Return
USER_APP_DENIED

page

This page notifies the user that his access to the
application is not managed by WAP. The new
SESSION_TICKET is sent with this page to
update the EXPIRE timestamp for the users
session.

Create Application Ticket

res.cgi.rmt_cookie=APP_TICKET TXT:...

Create Application Ticket Signature

res.cgi.rmt_cookie=APP_TICKET_SIG....

The user has been authenticated as being able to
communicate with this application. Create an
application ticket and ticket signature for this app,
and setup the APP_TICKET_TXT and
APP_TICKET_SIG rmt_cookie CGI variables to
be sent with the next page.

Reg.gci.RET_URL found?

Check the request to see if it contains a CGl
variable named RET_URL. Thisisthe URL that
the referring application wishes us to redirect the
user to.

DOC Intranet Architecture

19

RET_URL alowable?

Check to see if the RET_URL URL isavalid URL
for this application. The reference implementation
will consult the directory service to make this
determination.

Redirect to ret.cgi.RET_URL

Redirect the user to the RET_URL, with al CGlI
variables and headers set previoudly in thistree.

Return
BAD_RET_URL page

This page notifies the user that the referring
application resides at an unregistered URL and
cannot be redirected to.

Req.header.referer set?

Check the request to seeif it contains a referrer
header. The referrer header can be used as an
alternate to the RET_URL variable. If present, we
should redirect the user back to the referring URL.

referrer dlowable

Check to see if the referrer URL isavalid URL
for this application. The reference implementation
will consult the directory service to make this
determination.

Redirect to reg.header.referer Redirect the user to the referring URL, with al
CGl variables and headers set previoudy in this
tree.

Return This page notifies the user that the referring

BAD_REFERER page

application resides at an unregistered URL and
cannot be redirected to.

Return A page indicating the login was successful should
LOGIN_SUCCESS be presented if we cannot ascertain a location to
Page redirect the user’s browser to.

5.1.4 Response Output

Pages Returned by the Authenticator Ticket Service

WAP_LOGIN page

WAP_USER input field

WAP_PASS input field

login button

cancel button, which sets the WAP_ANON CGI variable

DOC Intranet Architecture

20

RET_URL hidden field, if available

APP_ID hidden field, if available

INVALID_LOGIN page
Text message informing user that login attempt was invalid
WAP_USER input field
WAP_PASS input field
login button
cancel button, which sets the WAP_ANON CGI variable
RET_URL hidden field, if available

APP_ID hidden field, if available

EXPIRED_LOGIN page
Text message informing user that the session has expired due to inactivity
WAP_USER input field
WAP_PASS input field
login button
cancel button, which sets the WAP_ANON CGI variable
RET_URL hidden field, if available

APP_ID hidden field, if available

USER_APP_DENIED page

Site dependent message informing the user that they are not currently configured to
access this application.

Button to allow the user to continue anonymously as an unauthenticated user.

DOC Intranet Architecture 21

INACTIVE_ACCOUNT

Message informing the user that their Intranet account has been disabled

LOGIN_SUCCESS page

Message informing the user that they have successfully logged into the Intranet.

BAD_SIG page

Message informing user that the SESSION_COOKIE submitted failed the digital
signature test.

BAD RET URL

Message informing user that the return application URL is invalid for the application.

BAD_REFERER

Message informing user that the return application URL is invalid for the application.

Redirects returned by the Authenticator Ticket Service
Redirect to reg.cgi.RET_URL

Redirect to the application the user is attempting to authenticate to

Redirect to reg.header.referrer

If req.cgi.RET_URL is not set, then we can redirect to reg.header.referrer, if available.

Authenticator Output

Once the authenticator has generated the application and session keys, it must redirect the user to
a URL under the control of the referring application. The authenticator either redirects to the
URL specified in the request’s RET_URL CGl variable, or the URL specified in the request’s
referrer header. If the authenticator finds either of these URL’s, the authenticator is responsible

DOC Intranet Architecture 22

for first verifying that the URL is an allowable URL for the application. The reference
implementation consults the directory service to make this determination.

When redirecting the user’s browser, the authenticator will set up to two header fields which
cause, directly or indirectly, cookies to be stored on a users browser. The below table defines
these header fields

Header s set by the Authenticator

Name Value

Location URL to redirect to, either req.cgi.RET_URL or
reg.header.referrer

SetCookie SESSION_TICKET TXT=<session ticket>;secure

SetCookie SESSION_TICKET_SIG=<digital signature of session ticket>

The first header, Location, is a standard HTTP header for redirecting browsers to a different
URL. Itisusedin thisinstance to return the browser to the referring application.

The next two headers are SetCookie type headers, the standard HT TP header for setting a cookie
on the user’ s browser. Since no domain or path is defined, this cookie will default to being
returned only to the authenticator host, and will be returned to any URL on that host. The
SESSION_TICKET_TXT contains the actual session ticket that states that the user has logged
into the Intranet, while the SESSION_TICKET_SIG contains the digital signature verifying the
authenticity of the ticket.

The authenticator also needs to set cookies named APP_TICKET _TXT and APP_TICKET_SIG,
but cannot do so directly viathe SetCookie header. The problem is that these two tickets must
have their domain set to the application’s domain, not the authenticator’s domain. Since
browsers can be configured to reject cookies set by a server on one domain for return to servers
in another domain, an aternate method has been devised. A CGI variable, rmt_cookie, is added
to the page when redirecting to the remote application. Since the remote application is WAP-
enabled, it recognizes this CGI variable, and realizes that it must itself set a cookie on the user’s
browser, to be returned itself on successive hits by the user’s browser.

CGl variables set by the Authenticator

Name Value
rmt_cookie APP_TICKET_TXT=<plaintext application ticket>
rmt_cookie APP_TICKET_SIG=<application ticket digital signature>

This cooperation between the WAP authenticator and WA P-enabled applications allows the
authenticator to effectively set cross-domain cookies on users' s browsers.

DOC Intranet Architecture 23

Currently, the only defined rmt_cookie values are APP_TICKET _TXT and APP_TICKET_SIG.
Applications should ignore attempts to set other cookies via this mechanism.

5.2 Password Service

5.2.1 Overview

The password service provides a means of changing a user's password. The password serviceis
just abasic WAP client application, but is covered in this protocol specification because its
functionality is required for any authenticator service to be complete. WAP Server
implementations MUST implement the password service. WAP Servers conform to the WAP
client interface to implement the password service. See section 6.0 for details of the WAP client
interface. Specificaly, this means that the password service has an Intranet Application 11D
assigned to it.

The password service is designed to be accessed either through the HTML user interface using a
HTTP form. The HTML interface can be customized on a per-site basis, but the form interface,
including form variable names and allowable values, MUST conform to this specification.

5.2.2 Request Input Parameters

The URL for accessing the reference implementation password service is
https://login.doc.gov/password.

The password service accepts requests only viaHTTPS. The following CGI variables are
processed. All other CGlI variables are ignored.

CGI Variables processed by the Password Service

Name Value

OLD_PASSWORD The user's current WAP password.

NEW_PASSWORD _1 | The user's requested new WAP password.

NEW_PASSWORD 2 | The user's requested new WAP password, astyped in a
second time for confirmation.

The password service checks for the following cookies to determine if the user is authenticated
for this application. Anonymous access is disallowed. The handling of these items s per section
6.

Cookies accepted by the Password Service

Name Value

APP _TICKET _TXT Encrypted application Ticket

APP _TICKET_SIG Digital signature of the application ticket

DOC Intranet Architecture 24

5.2.3 Execution
The server should first validate that the client is authenticated, as described in section 6.0.

For authenticated users, the WAP_CHG_PASSWORD page is presented. |If the user
successfully enters the old password and a valid new password, the WAP_OK_PASSWORD
page should be presented.

If the OLD_PASSWORD field is correct, the WAP_BAD_PASSWORD page is presented,
giving the user another chance to change the password.

If NEW_PASSWORD_1 does not match NEW_PASSWORD _2, then the
WAP_TYPO_PASSWORD page is presented, giving the user another chance to change the
password.

If the NEW_PASSWORD fields do not comply with site password requirements, then
WAP_INVALID_PASSWORD page is returned, giving the user a chance to choose a different
password.

In addition, servers MAY alow administrators to configure additional security features, such as

a maximum number of retries before the account islocked out. These additional features can in
no way interfere with the operation of the prescribed interface.

5.2.4 Response Output

Pages Returned by the Authenticator Password Service
WAP_CHG_PASSWORD page

OLD_PASSWORD password input element
NEW_PASSWORD _1 password input element
NEW_PASSWORD _2 password input element
submit button

cancel button

WAP_TYPO_PASSWORD page
Text explaining that passwords do not match
OLD_ PASSWORD password input element

NEW_PASSWORD _1 password input element

DOC Intranet Architecture 25

NEW_PASSWORD _2 password input element
submit button

cancel button

WAP_BAD_PASSWORD page
Text explaining that the old password is not correct
OLD_ PASSWORD password input element
NEW_PASSWORD 1 password input element
NEW_PASSWORD _2 password input element
submit button

cancel button

WAP_INVALID_PASSWORD page

Text explaining that the new password is insecure, and describing the rules in effect for
passwords.

OLD_ PASSWORD password input element
NEW_PASSWORD _1 password input element
NEW_PASSWORD _2 password input element
submit button
cancel button

WAP_OK_PASSWORD page

Text indicating that password was changed successfully.

DOC Intranet Architecture

26

6 WAP-enabled Applications (WAP Client | nterface)

6.1 Overview

The behavior a WAP-enabled application must exhibit is simpler than the behavior a WAP
authenticator must exhibit. Basically, the WAP-enabled application, upon receiving a request for
aresource that requires authentication, must check the incoming request for cookies named
APP_TICKET_TXT and APP_TICKET_SIG. If these cookies are found, the
APP_TICKET_SIG is verified against the APP_TICKET_TXT, using the public key of the
authenticator. Successful comparison means that the ticket is authentic. The ticket is then
checked for validity; USER _IP addressis verified, APP_IID is verified, and RENEW time is
verified. If all these pass, the user is authentic.

The first time an authenticator sends an application ticket to the application, it is not in the form
of acookie. Since the authenticator cannot set a cookie to be returned to the application, the
authenticator instead sets a pair of CGI variables, both named ‘rmt_cookie' (See section 5.1.4).
One of the pair will be the TXT portion, and the other the SIG portion. Upon receiving a request
with this CGlI variable pair, the WAP-enabled application must verify the authenticity of the
rmt_cookie by calculating a digital signature of the TXT portion with the authenticator’s public
key, and compare it with the SIG portion. If the two compare correctly, the rmt_cookie is
considered authentic. The application must redirect the browser back to very URL the browser is
requesting, but with a SetCookie header set for the contents of both rmt_cookie variables (TXT
and SIG portions) the application received.

Currently, only APP_TICKET_TXT and APP_TICKET_SIG are valid rmt_cookie entries. All
others should be ignored.

If the WAP-enabled application gets a request without a APP_TICKET_TXT and
APP_TICKET_SIG cookie pair, nor armt_cookie CGI variable pair containing
APP_TICKET_TXT and APP_TICKET_SIG, or if he receives a ticket which has exceeded the
renewa time, the application must set a CGI variable named APP_IID containing this
application instance' s intranet id, and must set a CGl variable named RET_URL containing the
URL the user should return to once authenticated, and must redirect the user’s browser to the
authenticator’ s ticket service URL.

6.2 Request Input Parameters

The WAP-enabled application accepts requestsviaHTTP or HTTPS.

No CGI variables are needed when requesting a resource from a WA P-enabled application.
The WAP-enabled application checks for the following cookie.

Cookies handled by WAP-enabled Applications

Name Value

APP_TICKET_TXT | The plaintext application ticket from the WAP
authenticator.

DOC Intranet Architecture 27

APP TICKET SIG

The digital signature of APP_TICKET_TXT, signed
with the authenticator’ s private key.

The WAP-enabled application checks for the following header.

HTTP CGI variables handled by WAP-enabled Applications

Name Value
rmt_cookie APP_TICKET_TXT:<plaintext application ticket>
rmt_cookie APP_TICKET_SIG:<application ticket digital signature>

6.3 Execution

The decision tree illustrated in the figure on the next page is followed each time a WAP-enabled
application receives a request for a resource that requires authentication.

DOC Intranet Architecture

28

Receive
HTTP or
HTTPS
Request

req.cgi.

req.cookie.

N rmt_cookie.
APP—Tf'CKEI—TXT No > APP_TICKET_TXT
ouna found?
Yes Yes
. req.cgi.
req.cookie. |
rmt_cookie.
APP_TICKET_SIG No No APP_TICKET SIG
found?
found?
Yes Yes
Digital Log Digital
Signature No——| Protocol |e———No Signature
Correct? Violation Correct?
Return
BAD_SIG Yes
Page

SetCookie APP_IID
SetCookie RET_URL
Redirect to WAP authenticator

Yes

Ticket Log Ticket
USER_IP No——»{ Protocol |«———No USER_IP
correct? Violation correct?
Return
Yes BAD_IP Yes
Page
Ticket Ticket
USER_IID No No USER_IID
found? l l found?

(User is anonymous)

Yes Provide 'Public face' content Yes
Ticket. Log Ticket.
APP_IID No——»{ Protocol |«——No APP_IID
correct? Violation correct?
Return
BAD_APP_ID
User is authentic Page User is Authentic

Allow Application to handle __ SetCookie APP_TICKET_TXT

user's access to resource
Redirect to this URL

SetCookie APP_IID
No SetCookie RET_URL

Redirect to WAP authenticator

WAP-enabled Application

Decision Tree
This Decision Tree is followed when a
WAP-enabled Application receives a
request for a page requiring
authentication via HTTP or HTTPS

SetCookie APP_TICKET_SIG

DOC Intranet Architecture

29

Commentary on WAP-enabled Application Decision Tree

Receive HTTPS request

Thisis the starting point for all transactions. A HTTP
or HTTPS connection is made for a resource
requiring user authentication.

reg.cookie APP_TICKET_TXT found?

Check to see if the user’s browser has submitted a
cookie named APP_TICKET_TXT. This should
contain a plaintext application ticket.

reg.cookie APP_TICKET_SIG found?

Check to see if the user’s browser has submitted a
cookie named APP_TICKET_SIG. This should
contain adigital signature.

reqg.cgi.rmt_cookie APP_TICKET _TXT
found?

Check to seeif the request contains a CGlI variable of
the form rmt_cookie=APP_TICKET_TXT... Thisis
arequest for the application to set a cookie,
supposedly on behalf of the authenticator.

reg.cgi.rmt_cookie APP_TICKET _SIG
found?

Check to seeif the request contains a CGI variable of
the form rmt_cookie=APP_TICKET_SIG... This
should be a digital signature of APP_TICKET_TXT.

Digital Signature Correct?

Use the authenticator’ s public key to verify that

APP TICKET _SIGisin fact avalid digital signature
of APP_TICKET_TXT. Ifitis, then the ticket is
authentic.

renew time not exceeded?

Check to verify that the ‘expire time’ contained in
APP_TICKET_TXT has not been exceeded. If it has,
the application needs to obtain a new ticket by
redirecting the user to the authenticator.

Ticket USER_IP correct?

Verify that the user’s browser isin fact connecting
from the address listed as USER_IP in the ticket.

Ticket USER_I1D found?

Check to see if aUSER _1ID is provided with the
ticket. If not, then the user is connecting in
anonymous mode.

Ticket APP_IID correct?

Verify that the ticket contains this application’s
Intranet ID.

Log Protocol Violation

Aninvalid ticket has been received. All such
attempts should be logged so that administrators can
take appropriate action.

DOC Intranet Architecture

30

Return BAD_SIG Page

A page should be returned to give the user further
guidance on appropriate actions if the
APP_TICKET_SIG is not genuine. The contents will
depend on site preferences — users could be notified
that the ticket was rejected, or a generic ‘Login
Failed’” message could be displayed.

Return BAD_IP Page

A page should be returned to give the user further
guidance on appropriate actions if the
APP_TICKET_TXT listsa USER_|P address that
does not match the IP the browser is currently
connecting from.

User is anonymous.
Return ‘public face’ content.

The user is not authenticated. The application may, at
its discretion, provide a ‘public face' interface to the
anonymous user.

SetCookie APP_IID
SetCookie RET_URL
Redirect to WAP authenticator

If there is no application ticket, or if thereis a session
ticket requiring renewal, redirect the user’s browser to
the authenticator. Set RET_URL to the URL the
authenticator should return the user to, and APP_ID
to this application’s 1I1D.

User is authentic.

SetCookie APP_TICKET _TXT
SetCookie APP_TICKET_SIG
Redirect to this URL

The user is authentic, and the application needs to
persistently store the application ticket and signature
the user presented in a cookie on the user’s browser.
Set cookies for APP_TICKET _TXT and
APP_TICKET_SIG, and redirect the user back to this
URL.

User is authentic.
Allow application to handle user’s
access to resource

The user is authenticated. It is now up to the
application to decide what, if any, content the
application wishes to provide the user.

6.4 Outputs

Pages Returned by the WAP-enabled Application

The WAP client API will provide default pages for the following. Applications are encouraged
to override this default behavior, and provide their own versions of the following pages.

BAD_SIG page

Message informing user that the SESSION_COOKIE submitted failed the digital

signature test.

DOC Intranet Architecture

31

BAD_APP_ID page

Message informing user that SESSION_COOKIE isinvalid because it is not for the
application he intends to connect to.

BAD_|IP page

Message informing user that their session is invalid because their |P address has changed.

Redirects returned by the WAP-enabled Application
Redirect to WAP authenticator

Redirect to the WAP authenticator URL after setting CGI variables APP_IID and
RET_URL.

Redirect to this URL

Redirect to one’s own URL after setting APP_TICKET _TXT and APP_TICKET_SIG
cookies.

7 Scenarios

User requesting an application; user not authenticated. (See figure on the next page.)

DOC Intranet Architecture 32

Browser

User

1. Request for resource: »

2. reqg.cookie. APP_TICKET_TXT not found,
req.cgi.rmt_cookie APP_TICKET_TXT not found,
set res.cgi.RET_URL, res.cgi.APP_IID,
redirect to authenticator

e

7. Request for resource,
with req.cgi.rmt_cookie=APP_TICKET_TXT,————]|
reg.cgi.rmt_cookie=APP_TICKET_SIG

8. Cookie.APP_TICKET_TXT not found,
reg.cgi.rmt_cookie=APP_TICKET_TXT found,
reg.cgi.rmt_cookie=APP_TICKET_SIG found,

l¢—— Digital Signature Correct (lookup WAP pub key),
Renew not expired, APP_ID correct, IP correct,
SetCookie APP_TICKET_TXT, APP_TICKET_SIG
redirect to self

9. Follow Redirect,
with header Cookie=APP_TICKET (TEXT & SIG) ’
10. Cookies APP_TICKET (TEXT & SIG) found,
Digital Signature is Correct,
[¢———— Renew not expired, APP_ID correct, IP correct,

WAP-enabled
Application

User is Authentic,
Return Resource (At App's Discretion)

WAP Protocol Example
The user's browser initially has no
cookies for either domain
(authenticator or application), and
successfully requests a resource from
the application.

3. Follow Redirect »

4. cookie.SESSION_TICKET_TXT not found,
req.cookie. WAP_ANON not found,
req.cookie.WAP_USER not found,

Send Login Page

—

5. Submit form, with WAP_USER and

L —>
WAP_PASS as filled in by user

6. SESSION_TICKET not found,
WAP_ANON not found,
WAP_USER, WAP_PASS are correct,
WAP account is active (lookup)
Generate SESSION_TICKET (SIG+TEXT)
SetCookie SESSION_TICKET (SIG&TEXT)
ret.cgi.APP_IID found
User is allowed to access APP (lookup)
set res.cgi.rmt_cookie=APP_TICKET(SIG&TEXT),
reg.cgi.RET_URL found,
RET_URL is valid (lookup)
redirect to RET_URL

——

WAP
Authenticator
Ticket Service

Accepts HTTPS
connections only

: : Password

WAP

Archive

Directory Service

DOC Intranet Architecture

33

8 Encryption and Digital Signatures

8.1 Digital Signatures

All digital signatures will be per FIPS Pub 186.2 (See [FIPS186-2]. The reference
implementation will use RSA encryption using network byte order.

See [CRYPTO] for details.

9 Unresolved | ssues

Browsers Using | P Address Pools

Need to determine if ISPs still use pools of 1P addresses for web browsers, thus alowing a
browser’s | P address to change during a session. If this can occur, the protocol must allow for
users to re-login and have the current block (or range) recorded as valid.

Applications saving state of user

Need to determine how to push POST style CGI variables back viaaredirect. Some applications
may only support POST operations so URL-encoding the redirect may not work for some legacy
applications.

10 References

[RFC2109] HTTP State Management Mechanism (RFC 2109), available

http://www.fags.org/rfcs/rfc2109.html

[RFC2119] Key words for use in RFCs to Indicate Requirement L evels (RFC 2119),

available http://www.fags.org/rfcs/rfc2119.html

[RFC2616] Hypertext Transfer Protocol -- HTTP/1.1 (RFC 2616), available

http://www.fags.org/rfcs/rfc2616.html

[SSL] The SSL Protocol, Version 3.0, available

http://home.netscape.com/eng/ssl 3/ssl -toc.html

[CRYPTOL pepartment of Commerce Intranet Cryptography Support API & Tutorial

[FIPS186-2] Fps pub 186-2: Digital Signature Standard, available
http://csrc.nist.gov/fips/fipsl86-2.pdf

DOC Intranet Architecture 34

Appendix B: WAP Client API for the DOC Intranet

Version 1.0

Revised: 2000.11.12

1 Introduction

Applications utilizing the WAP protocol for authentication within the DOC intranet require a
standard tool set to facilitate executing the client protocol. The purpose of the document is to

provide API's enabling client applications to easily authenticate users through use of the WAP
protocol. This document describes the API for Java, Perl, and PHP.

2 Terminology

API
Application Programming Interface. A set of routines provided for a devel oper to access
programmatic functionality that has already been devel oped.

DOC
Department of Commerce.

]»)
Intranet ID. The identifier for any entry in the DOC intranet directory service. The
1D is unique in the entire directory service. For instance, an application cannot have the
same |ID as a person. It isastring composed of numbers and upper and lower case
letters, and is case-sensitive.

3 Overview

The Directory API provides applications an easy means of accessing DOC directory service and
Group Service information. Rather than making calls to the LDAP server and group server
directly, the application uses API calls that deal with networking, protocol, and data handling
issues. The programmer need only concentrate on the application they are trying to build.

A diagram showing the Directory API’s place in the directory portion of the DOC intranet
infrastructure isincluded in Figure 1 in Appendix D: Directory Schema for the DOC Intranet
Directory Service.

DOC Intranet Architecture 35

4 The Directory API for Java

This class manages WAP authentication. Applications usually handle requests as follows:

Aut hent i cati onManager auth = new Aut henti cati onManager(...);
try {
aut h. aut henti cate();
if (auth.getPayload() !'= null)
/'l restore state from payl oad usi ng getPayload
if (auth.isAnonynous()) {
/1 Provide anonynous service
} else if (auth.isAlternateUsernaneProvided()) {
/1l Provide service using getAuthAlternateUsername
/I as user identifier
} else {
/1l Provide service using getAuthUserlID as user identifier
}
} catch (Protocol Viol ati onException pve) {
aut h. sendError Page(...);
return;
} catch (RedirectRequiredException rre) {
aut h. set Payl oad (...);
aut h. sendRedi rect () ;

return;

DOC Intranet Architecture 36

4.1 The AuthenticationM anager Class

Signature

public class AuthenticationM anager extends Object

Variables

public static final int REDIR_NONE WAP does not require redirection.

public static final int REDIR_AUTH WAP requires redirection to Authenticator

public static final int REDIR_SELF WAP requires redirection to self in order to set
cookies on client.

public static final int PAGE_BAD_SIG WAP BAD_SIG page handle.

public static final int PAGE_BAD_APP_IID | WAPBAD_APP_IID page handle.

public static final int PAGE_BAD _IP WAP BAD _IP page handle.

Congtructors

AuthenticationM anager
public AuthenticationManager(String myApplicationlID,
URL myReturnURL,
docDirectory dirSvc,
HttpServiletRequest req,
HttpServletResponse res,
TicketService tktSvc)
Defines an authenticator with an initial Request/Response pair.
Parameters:
myApplicationlID - The Intranet ID of the calling application.
myReturnURL - The URL to which clients should return if they are redirected elsewhere.

dirSvc - The DOC Directory Server reference as a docDirectory object.

DOC Intranet Architecture 37

req - The incoming servlet request.

res - The outgoing servlet response.

tktSvc - The TicketService object describing the WAP ticket service to use.
Methods

setAuditL og

public void setAuditLog(OutputStream logStream)

Define the stream to which logging should be directed. The logging is for protocol and
security violations.

Parameters:

logStream - the output stream to direct audit logging to.

setPayload

public void setPayload(String payload)

Define a WAP payload. The WAP payload can be used to store state when redirecting a
regquest to the authenticator. The authenticator is required to maintain the payload, and to
return it when redirecting the user back to the calling application. It is returned as a CGlI
GET parameter named payload.

Parameters:

payload - The string representation of a payload.

getPayload

public String getPayload()

If apayload is present in the incoming request, this returns the String representation of
the payload, else null. # @return String representation of a payload, null if request has no

payload

sendRedirect

public void sendRedirect()

Modifies the response object to set areturn code of 301 and add a location header for the
purpose of redirection, and commits the response object to the servlet output stream. This
is used to redirect a user who either lacks authentication information or who has

DOC Intranet Architecture 38

authentication information requiring renewal to the Ticket Service URL, or to redirect the
user back to this URL, setting cookies on the user's browser in the process.

authenticate

public void authenticate() throws ProtocolViolationException,
RedirectRequiredException

Examines the incoming request for authentication ticket, and checks any ticket present
for validity. AuthenticationManager objects go through two phases: first they are created,
then they authenticate the request. Operations that depend on authentication having been
tested, like getAuthUserl 1D, will implicitly call authenticate if necessary.

Throws: Protocol ViolationException

if the WAP protocol is violated. This happens when client |P address does not match that
on ticket, ticket fails digital signature test, or ticket's Application 11D does not match the
calling application's 11D. The specific subclass indicates which violation occurred.

Throws: RedirectRequiredException

authentication cannot complete without a redirect as required by WAP. The specific
subclass indicates which redirection case is needed.

isRedirectRequired
public boolean isRedirectRequired()

Checks if the WAP protocol requires a redirection for this connection. Redirections are
required if connecting clients have no tickets, or if they have a old ticket requiring
renewal, or if the authenticator has set CGI variables indicating the application should set
cookies on behalf of the authenticator. Equivalent to (getRedirectType() !=
REDIR_NONE).

Returns:
whether redirect is required to complete authentication protocol
See Also:

sendRedirect, getRedirectURL, getRedirectType

isRenewRequired
public boolean isRenewRequired()

Checks if the WAP protocol requires a renewal request to be sent to the authenticator.
Renewals are required if the connecting client has a ticket with an expired renew date.

DOC Intranet Architecture 39

Returns:
whether application ticket is outdated and requires renewal
See Also:

sendRedirect

isvValidTicketProvided

public boolean isValidTicketProvided()

Checks if the connecting client provided a valid, up to date application ticket. This
method checks the following:

Posession of aticket

Valid digital signature by the authenticator

Renew time has not expired

Client |P address matches that on ticket
Returns:

whether client submitted a valid application ticket via a cookie

iISAnonymous

public boolean isAnonymous()

Checks if the user is accessing this application anonymously. This happens when a user
declines to provide authentication information, or when the authenticator is configured to

automatically return anonymous access to this application.
Returns:

whether the user is connected anonymously (has application ticket but no UserlID)

isAlter nateUser nameProvided

public boolean isAlternateUsernameProvided()

Checks if the client's ticket contains an alternate username. Alternate usernames are
provided on an application-specific basis by the authenticator to legacy applications that
do not understand Intranet ID's, and require instead a different username be used by the

user.

DOC Intranet Architecture 40

Returns:

whether the authenticator provided an alternate username for this application to use
instead of UserlID

getAuthAlter nateUser name

public String getAuthAlternateUsername()

Returns the Authenticated Alternate Username if so included in the authentication ticket.
Returns null if no alternate username is provided.

Returns:
the alternate username provided by the authenticator, or null if none was provided
See Also:

isAlternatelUsernameProvided

getAuthUserl1D

public String getAuthUserlID()

Returns the Intranet ID (11D) of the authenticated user, or null for anonymous or
unauthenticated users.

Returns:

the authenticated user 11D of the client

getRedirectURL
public URL getRedirectURL()
If WAP requires aredirect, this call returns the URL to be redirected to, else null.
Returns:

the URL which sendRedirect will redirect the client to, or null if no redirection is required.

getRedirectType

public int getRedirectType()

Returns REDIR_AUTH if WAP requires redirect to authenticator, REDIR_SELF if WAP
requires redirect to self, and REDIR_NONE if WAP does not require a redirect.

DOC Intranet Architecture 41

Returns:

one of REDIR_AUTH, REDIR_SELF or REDIR_NONE, reflecting what type of redirect
isrequired by the WAP protocol.

sendError Page

public void sendErrorPage(int pagelD)
Sends a fixed page out in accordance with WAP protocaol.
Parameters:

pagel D - One of PAGE_BAD_SIG, PAGE_BAD _IP or PAGE_BAD_APP IID

4.2 The BadAppl I DException Class
Signature

public class BadAppl | DException extends Protocol Viol ationException

Constructors

BadAppl | DException
public BadApplIDException()

Constructs a BadA ppl | DException with no specified detail message.

BadAppl I DException
public BadApplIDException(String s)

Constructs an BadA ppl I DException with the specified detail message.

Parameters:

s - the detail message

4.3 The BadClientl PAddressException Class
Signature

public class BadClientl PAddr essException extends Protocol ViolationException

DOC Intranet Architecture 42

Congtructors

BadClientl PAddressException

public BadClientIPAddressException()

Constructs a BadClientl PAddressException with no specified detail message.

BadClientl PAddressException

public BadClientIPAddressException(String s)
Constructs an BadClientl PAddressException with the specified detail message.
Parameters:
s - the detail message

4.4 The BadSignatur eException Class
Signature

public class BadSignatur eException extends Protocol ViolationException

Constructors

BadSignatur eException

public BadSignatureException()

Constructs a BadSignatureException with no specified detail message.

BadSignatur eException

public BadSignatureException(String s)
Constructs an BadSignatureException with the specified detail message.
Parameters:

s - the detail message

4.5 The ProtocolViolationException Class
Signature

public class ProtocolViolationException extends Exception

DOC Intranet Architecture

Congtructors

ProtocolViolationException

public ProtocolViolationException()

Constructs a Protocol ViolationException with no specified detail message.

ProtocolViolationException

public ProtocolViolationException(String s)
Constructs an Exception with the specified detail message.
Parameters:

s - the detail message

4.6 The RedirectNoTicketException Class
Signature

public class RedirectNoT icketException extends RedirectRequiredException

Congtructors

RedirectNoTicketException

public RedirectNoTicketException()

Constructs a RedirectNoTicketException with no specified detail message.

RedirectNoTicketException
public RedirectNoTicketException(String s)

Constructs an RedirectNoTicketException with the specified detaill message.
Parameters:

S - the detail message

DOC Intranet Architecture

4.7 The RedirectRenewal Exception Class
Signature

public class Redir ectRenewal Exception extends RedirectRequiredException

Constructors

RedirectRenewal Exception
public RedirectRenewalException()

Constructs a RedirectRenewal Exception with no specified detail message.

RedirectRenewal Exception

public RedirectRenewalException(String s)
Constructs an RedirectRenewal Exception with the specified detail message.
Parameters:

S - the detail message

4.8 The RedirectRequiredException Class
Signature

public class Redir ectRequir edException extends Exception

Constructors

RedirectRequiredException
public RedirectRequiredException()

Constructs a RedirectRequiredException with no specified detail message.

RedirectRequiredException
public RedirectRequiredException(String s)

Constructs an RedirectRequiredException with the specified detail message.

Parameters:

s - the detail message

DOC Intranet Architecture 45

4.9 The RedirectToSelfException Class
Signature

public class Redir ect T 0Sel fException extends RedirectRequiredException

Congtructors

RedirectT oSelfException

public RedirectToSelfException()

Constructs a RedirectToSelfException with no specified detail message.

RedirectToSelfException

public RedirectToSelfException(String s)
Constructs an RedirectToSelfException with with the specified detaill message.
Parameters:

s - the detail message

4.10 The TicketService Class
Signature

public class TicketService extends Object

Congtructors

TicketService
public TicketService(URL ticketServiceURL,

byte ticketServicePublicKey[])

Creates a ticket service object to hold information defining a WAP authenticator ticket
service

Parameters:

ticketServiceURL - the well-known URL of the ticket service

DOC Intranet Architecture

46

ticketServicePublicK ey - the public key used to authenticate the authenticator

TicketService

public TicketService()

Creates an uninitialized ticket service object

M ethods

setURL

public void setURL(URL URL)
Sets or replaces the URL representing the well-known URL of the ticket service.
Parameters:

URL - the well-known ticket service URL

setPublicK ey
public void setPublicKey(byte publicKey[])
Sets or replaces the public key used to authenticate with this ticket service.
Parameters:

publicKey - the well-known ticket service public key

getURL

public URL getURL()

Return the well-known URL of the ticket service or null if not set.

getPublicK ey

public byte[] getPublicKey()

Return the well-known ticket service public-key, or null if not set.

DOC Intranet Architecture 47

5 The WAP Client API for Perl

The Perl client API’s reside in a module named DOCIntranet.pm. They require CPAN modules
Exception and URI:URL. The main class is the AuthenticationManager class, which requires a

TicketService class and a DocDirectory class in its constructor. Various exceptions round out
the provided set of classes.

Applications usualy handle requests as follows:
use Exception;
use URI:: URL;

use DCOCI ntranet;

$aut h = new Aut henti cati onManager(...);

try {

$aut h- >aut henti cat e() ;
i f ($aut h->get Payload() !'= null)
/'l restore state from payl oad usi ng getPayload
i f ($aut h->i sAnonymous()) {
/1 Provide anonynous service
} else if ($auth->i sAlternateUsernaneProvided()) {
/1 Provide service using getAuthAlternateUsername
// as user identifier
} else {

/1 Provide service using getAuthUserliID as user identifier

catch DOCI ntranet:: Protocol Viol ati onExcepti on pve =>

DOC Intranet Architecture

48

sub{
$aut h. sendError Page(...);

return;

b

catch DOCI ntranet: : Redi rect Requi redException rre =>

sub{
$aut h. set Payl oad (...);
$aut h. sendRedi rect () ;

return;

}

5.1 The AuthenticationM anager Class

Signature
package AuthenticationM anager ;

@ISA = ("UNIVERSAL’);

Variables

REDIR_NONE WAP does not require redirection.
REDIR_AUTH WAP requires redirection to Authenticator
REDIR_SELF WAP requires redirection to self in order

to set cookies on client.

PAGE_BAD SIG

WAP BAD_SIG page handle.

PAGE_BAD_APP |ID

WAP BAD_APP _|ID page handle.

PAGE_BAD_IP

WAP BAD _IP page handle.

Constructors

DOC Intranet Architecture

49

$aut h=new Aut henti cati onManager (
myAppl i cationl | D,
myRet ur nURL,
di r Svc,
t kt Svc)
Parameters:
myApplicationlID - The Intranet ID of the calling application.
myReturnURL - The URI::URL to which clients should return if they
are redirected elsewhere.
dirSvc - The DOC Directory Server reference as a docDirectory object.
tktSvc - The TicketService object describing the WARP ticket service to use.
Methods

setAuditL og
$aut h- >set Audi t Log(| ogFi | e)

Define the stream to which logging should be directed. The logging is for protocol and
security violations.

Parameters:

logFile - the output file to direct audit logging to.

setPayload

$aut h- >set Payl oad(payl oad)

Define a WAP payload. The WAP payload can be used to store state when redirecting a
reguest to the authenticator. The authenticator is required to maintain the payload, and to

return it when redirecting the user back to the calling application. It is returned as a CGlI
GET parameter named payload.

Parameters:

payload - The string representation of a payload.

DOC Intranet Architecture

50

getPayload
$aut h- >get Payl oad()

If apayload is present in the incoming request, this returns the String representation of
the payload, else null.

Returns:

String representation of a payload, null if request has no

payload

sendRedirect
$aut h- >sendRedi rect ()

Outputs a redirection HTTP response as required by the WAP protocol. Thisis used to
redirect a user who either lacks authentication information or who has authentication
information requiring renewal to the Ticket Service URL, or to redirect the user back to
this URL, setting cookies on the user's browser in the process.

authenticate

$aut h- >aut henti cat e()

Examines the incoming request for authentication ticket, and checks any ticket present
for validity. AuthenticationManager objects go through two phases: first they are created,
then they authenticate the request. Operations that depend on authentication having been
tested, like getAuthUserl 1D, will implicitly call authenticate if necessary.

Throws: Protocol ViolationException

if the WAP protocol is violated. This happens when client 1P address does not match that
on ticket, ticket fails digital signature test, or ticket's Application 11D does not match the
calling application's I1D. The specific subclass indicates which violation occurred.

Throws: RedirectRequiredException

authentication cannot complete without a redirect as required by WAP. The specific
subclass indicates which redirection case is needed.

isRedirectRequired
$aut h- >i sRedi r ect Requi red()
Checks if the WAP protocol requires a redirection for this connection. Redirections are

required if connecting clients have no tickets, or if they have a old ticket requiring
renewal, or if the authenticator has set CGI variables indicating the application should set

DOC Intranet Architecture 51

cookies on behalf of the authenticator. Equivalent to (getRedirectType() !=
REDIR_NONE).

Returns:
boolean indicating whether redirect is required to complete authentication protocol
See Also:

sendRedirect, getRedirectURL, getRedirectType

isRenewRequired
$aut h- >i sRenewRequi r ed()

Checks if the WAP protocol requires a renewal request to be sent to the authenticator.
Renewals are required if the connecting client has a ticket with an expired renew date.

Returns:
boolean indicating whether application ticket is outdated and requires renewal
See Also:

sendRedirect

isvValidTicketProvided

$aut h->i sVal i dTi cket Provi ded()

Checks if the connecting client provided a valid, up to date application ticket. This
method checks the following:

Posession of aticket

Valid digital signature by the authenticator

Renew time has not expired

Client |P address matches that on ticket
Returns:

boolean indicating whether client submitted a valid application ticket via a cookie

iISAnonymous

$aut h- >i sAnonynous()

DOC Intranet Architecture 52

Checks if the user is accessing this application anonymously. This happens when a user
declines to provide authentication information, or when the authenticator is configured to
automatically return anonymous access to this application.

Returns:

boolean indicating whether the user is connected anonymously (has application ticket but
no UserlID)

isAlter nateUser nameProvided

$aut h- >i sAl t er nat eUser nanePr ovi ded()

Checks if the client's ticket contains an alternate username. Alternate usernames are
provided on an application-specific basis by the authenticator to legacy applications
which do not understand Intranet ID's, and require instead a different username be used
by the user.

Returns:

boolean indicating whether the authenticator provided an alternate username for this
application to use instead of UserlID

getAuthAlter nateUser name

$aut h- >get Aut hAl t er nat eUser nane()

Returns the Authenticated Alternate Username if so included in the authentication ticket.
Returns null if no aternate username is provided.

Returns:

the aternate username string provided by the authenticator, or undef if none was
provided

See Also:

isAlternatelUsernameProvided

getAuthUser11D
$aut h- >get Aut hUser I 1 ()

Returns the Intranet ID (11D) of the authenticated user, or undef for anonymous or
unauthenticated users.

Returns:

the authenticated user 11D string of the client

DOC Intranet Architecture 53

getRedirectURL

$aut h- >get Redi rect URL()

If WAP requires aredirect, this call returns the URI::URL to be redirected to, else it
return undef.

Returns:

the URI::URL which sendRedirect will redirect the client to, or undef if no redirection is
required.

getRedirectType
$aut h- >get Redi r ect Type()

Returns REDIR_AUTH if WAP requires redirect to authenticator, REDIR_SELF if WAP
requires redirect to self, and REDIR_NONE if WAP does not require aredirect.

Returns:

one of the defined integers REDIR_AUTH, REDIR_SELF or REDIR_NONE, reflecting
what type of redirect is required by the WAP protocol.

sendError Page

$aut h- >sendEr r or Page(pagel D)
Sends afixed page out in accordance with WAP protocaol.
Parameters:

pagel D - One of the defined integers PAGE_BAD_SIG, PAGE_BAD _IPor
PAGE_BAD_APP_IID

5.2 The BadAppl | DException Class
Signature

package BadAppl | DException;

@ISA = (‘' Protocol ViolationException’);

Congtructors

DOC Intranet Architecture 54

BadAppl I DException
$exc = new BadAppl | DException()

Constructs a BadA ppl I DException.

5.3 The BadClientl PAddressException Class
Signature

package BadClientl PAddressException;
@I SA = (‘ Protocol ViolationException’);
Constructors

BadClientl PAddressException

$exc = new Badd i ent | PAddr essException ()

Constructs a BadClientl PAddressException.

5.4 The BadSignatur eException Class
Signature

package BadSignatur eException;
@ISA = (*Protocol ViolationException’);

Constructors

BadSignatureException

$exc = new BadSi gnat ur eException ()

Constructs a BadSignatureException.

5.5 The ProtocolViolationException Class
Signature

package ProtocolViolationException;

DOC Intranet Architecture

55

@ISA = (‘Exception’);

Congtructors

Protocol ViolationException

$exc = new Protocol Vi ol ati onException ()

Constructs a Protocol ViolationException.

5.6 The RedirectNoTicketException Class
Signature

package RedirectNoTicketException;
@I SA = (* RedirectRequiredException);

Constructors

RedirectNoTicketException
$exc = new Redi rect NoTi cket Exception ()

Constructs a RedirectNoTicketException.

5.7 The RedirectRenewal Exception Class
Signature

package Redir ectRenewal Exception;
@I SA = (‘ RedirectRequiredException);
Constructors

RedirectRenewal Exception

$exc = new Redi rect Renewal Exception ()

Constructs a RedirectRenewal Exception.

DOC Intranet Architecture

56

5.8 The RedirectRequiredException Class
Signature

package Redir ectRequir edException;
@ISA = (‘ Exception);

Congtructors

RedirectRequiredException
$exc = new Redi rect Requi redException ()

Constructs a RedirectRequiredException.

5.9 The RedirectToSelfException Class
Signature

package Redir ect T oSelfException;

@I SA = (‘ Renewa RequiredException);
Constructors

RedirectToSelfException

$exc = new Redirect ToSel f Exception ()

Constructs a RedirectToSelfException.

5.10 The TicketService Class
Signature

package TicketService;
@ISA = (‘UNIVERSAL’);

Constructors

TicketService

$aut h=new Ti cket Ser vi ce(

DOC Intranet Architecture 57

ticket Servi ceURL,

ti cket Servi cePubl i cKey)

Creates a ticket service object to hold information defining a WAP authenticator ticket
service

Parameters:
ticketServiceURL - the well-known URI::URL of the ticket service

ticketServicePublicKey - the public key used to authenticate the authenticator

TicketService

$aut h = new Ti cket Servi ce()

Creates an uninitialized ticket service object

M ethods

setURL

$aut h- >set URL(URL)
Sets or replaces the URI::URL representing the well-known URL of the ticket service.
Parameters:

URL - the well-known ticket service URI::URL

setPublicK ey
$aut h- >set Publ i cKey (publ i cKey)

Sets or replaces the public key used to authenticate with this ticket service.
Parameters:

publicKey - the well-known ticket service public key string

getURL
$aut h- >get URL()

Return the well-known URI::URL of the ticket service or undef if not set.

getPublicK ey

DOC Intranet Architecture

$aut h- >get Publ i cKey ()

Return the well-known ticket service public-key, or undef if not set.

DOC Intranet Architecture

59

6 The WAP Client API for PHP

The PHP client API’sreside in alibrary file named DOClntranet.inc. The main classisthe

AuthenticationManager class, which requires a TicketService class and a DocDirectory classin
its constructor.

Applications usually handle requests as follows:

i ncl ude "DOCl ntranet.inc";

$aut h = new Aut henti cati onManager(...);

$rv = $aut h->aut henticate();

isSet ($rv) or switch ($doc_errno) {

case O: /1 not really an error
br eak;

case BAD APP Il D

case BAD CLIENT IP:

case BAD SI G
$aut h. sendEr r or Page($rv) ; /'l does not return
br eak;

case RED RECT_AUTH:

case REDI RECT_SELF
$aut h. set Payl oad(...);
$aut h. sendRedi rect (); /1 does not return

br eak;

i f ($aut h- >get Payl oad())

DOC Intranet Architecture 60

/'l restore state from payl oad usi ng getPayload

i f ($aut h->i sAnonynous()) {

/1l Provide anonynous service

} else if ($auth->i sAlternateUsernaneProvided()) {

/1 Provide service using getAuthAlternateUsername

// as user identifier

} else {

/'l Provide service using getAuthUserllD as user identifier

6.1 The AuthenticationM anager Class

Signature

class AuthenticationM anager ;

Variables

int doc_errno

error number of last API call, or O on success

Defined Constants

int REDIR_NONE

WAP does not require redirection.

int REDIR_AUTH

WAP requires redirection to Authenticator

int REDIR_SELF WAP requires redirection to self in order to set
cookies on client.
int BAD_SIG WAP BAD_SIG page handle.

int BAD_APP_|ID

WAP BAD_APP 1D page handle.

int BAD_CLIENT_IP

WAP BAD_IP page handle.

Constructors

DOC Intranet Architecture

61

$aut h=new Aut henti cati onManager (
string nmyApplicationllD,
string nyReturnURL,
DocDirectory dirSvc,
Ti cket Servi ce tktSvc)
Parameters:
myApplicationlID - The Intranet ID of the calling application.
myReturnURL - The URI::URL to which clients should return if they
areredirected elsewhere.
dirSvc - The DOC Directory Server reference as a docDirectory object.

tktSvc - The TicketService object describing the WARP ticket service to use.
Methods

setAuditL og
voi d $aut h->set Audi t Log(string | ogFile)

Define the file to which logging should be directed. The logging is for protocol and
security violations.

Parameters:

logFile - the output file to direct audit logging to.

setPayload

voi d $aut h- >set Payl oad(string payl oad)

Define a WAP payload. The WAP payload can be used to store state when redirecting a
reguest to the authenticator. The authenticator is required to maintain the payload, and to

return it when redirecting the user back to the calling application. It is returned as a CGlI
GET parameter named payload.

Parameters:

payload - The string representation of a payload.

DOC Intranet Architecture

62

getPayload
string $auth->getPayload(void)

If apayload is present in the incoming request, this returns the String representation of
the payload, else returns an unbound value and sets $doc_errno.

Returns:

String representation of a payload, an unbound value if request has no

payload. On errors, also sets$doc_err no.

sendRedirect

voi d $aut h- >sendRedi r ect (voi d)

Outputs a redirection HT TP response as required by the WAP protocol. Thisis used to
redirect a user who either lacks authentication information or who has authentication
information requiring renewal to the Ticket Service URL, or to redirect the user back to
this URL, setting cookies on the user's browser in the process.

Return:

This function does not return control to the calling process.

authenticate
int $auth->authenticate(void)

Examines the incoming request for authentication ticket, and checks any ticket present
for validity. AuthenticationManager objects go through two phases. first they are created,
then they authenticate the request. Operations that depend on authentication having been
tested, like getAuthUserl 1D, will implicitly call authenticate if necessary.

Returns:

On error, returns an unbound value, and sets $doc_er r no to one of the following values.

BAD CLIENT_I P when the client | P address does not match
the P addrres in the presented ticket
BAD APP | 1D when the application |11 D does not match the

application IIDin the ticket

DOC Intranet Architecture 63

BAD SI G when the ticket fails the digital signature
conpari son test

REDI RECT_AUTH when a redirct to the authenticator is required

REDI RECT_SELF when a redirect back to the client is required

in order to set cookies

isRedirectRequired

bool $aut h->i sRedi rect Requi red(voi d)

Checks if the WAP protocol requires a redirection for this connection. Redirections are
required if connecting clients have no tickets, or if they have a old ticket requiring
renewal, or if the authenticator has set CGI variables indicating the application should set
cookies on behalf of the authenticator. Equivalent to (getRedirectType() !=
REDIR_NONE).

Returns:

boolean indicating whether redirect is required to complete authentication protocol , or an
unbound value if aut hent i cat e was called and generated an error.

See Also:

sendRedirect, getRedirectURL, getRedirectType, authenticate

isRenewRequired

bool $aut h- > sRenewRequi r ed(voi d)

Checks if the WAP protocol requires a renewal request to be sent to the authenticator.
Renewals are required if the connecting client has a ticket with an expired renew date.

Returns:

boolean indicating whether application ticket is outdated and requires renewal , or an
unbound value if aut henti cat e was caled and generated an error.

See Also:

sendRedirect , authenticate

DOC Intranet Architecture 64

isvValidTicketProvided

bool

$aut h- >i sVal i dTi cket Provi ded(voi d)

Checks if the connecting client provided a valid, up to date application ticket. This
method checks the following:

Posession of aticket

Valid digital signature by the authenticator
Renew time has not expired

Client IP address matches that on ticket

Returns:

boolean indicating whether client submitted a valid application ticket via a cookie, or an
unbound value if aut hent i cat e was called and generated an error.

iISAnonymous

bool

$aut h- > sAnonynous(voi d)

Checks if the user is accessing this application anonymously. This happens when a user
declines to provide authentication information, or when the authenticator is configured to
automatically return anonymous access to this application.

Returns:

boolean indicating whether the user is connected anonymously (has application ticket but
no UserlID) , or an unbound value if aut hent i cat e was called and generated an error.

isAlter nateUser nameProvided

bool

$aut h- >i sAl t er nat eUser namePr ovi ded(voi d)

Checks if the client's ticket contains an alternate username. Alternate usernames are
provided on an application-specific basis by the authenticator to legacy applications
which do not understand Intranet ID's, and require instead a different username be used
by the user.

Returns:

boolean indicating whether the authenticator provided an alternate username for this
application to use instead of UserlID , or an unbound value if aut henti cat e was
called and generated an error.

DOC Intranet Architecture 65

getAuthAlter nateUser name

string $aut h- >get Aut hAl t er nat eUser name(voi d)

Returns the Authenticated Alternate Username if so included in the authentication ticket,
or an empty string if none was included.

Returns:

the alternate username string provided by the authenticator, or an unbound value if
aut hent i cat e was called and generated an error. If no alternate username was
included in the ticket, returns an empty string.

See Also:

isAlternatelUsernameProvided, authenticate

getAuthUser11D
string $aut h- >get Aut hUser | | (voi d)

Returns the Intranet ID (11D) of the authenticated user, or an unbound value if
aut hent i cat e was called and generated an error.

Returns:

the authenticated user I1D string of the client or an unbound value if aut henti cat e
was called and generated an error. Returns an empty string if the user is anonymous.

getRedirectURL

string $aut h- >get Redi r ect URL(voi d)

If WAP requires aredirect, this call returns the URL to be redirected to or an unbound
vaueif aut henti cat e was called and generated an error.

Returns:

the URL which sendRedirect will redirect the client to, or an unbound value if
aut hent i cat e was called and generated an error.

getRedirectType
i nt $aut h- >get Redi r ect Type(voi d)

Returns REDIR_AUTH if WAP requires redirect to authenticator, REDIR_SELF if WAP
requires redirect to self, and REDIR_NONE if WAP does not require a redirect.

Returns:

DOC Intranet Architecture 66

one of the defined integers REDIR_AUTH, REDIR_SELF or REDIR_NONE, reflecting
what type of redirect is required by the WAP protocol. Returns an unbound value if
aut hent i cat e was called and generated an error.

sendError Page

voi d $aut h- >sendErr or Page(i nt pagel D)
Sends a fixed page out in accordance with WAP protocol.
Return:
This function does not return control to the calling process.

Parameters:

pagel D - One of the defined integers BAD_SIG, BAD_CLIENT _IP or BAD_APP_IID

6.2 The TicketService Class
Signature

class TicketService;

Congtructors

TicketService

$t kt Svc=new Ti cket Servi ce(
string ticket ServiceURL,

string ticket Servi cePublicKey)

Creates a ticket service object to hold information defining a WAP authenticator ticket
service

Parameters:
ticketServiceURL - the well-known URL of the ticket service

ticketServicePublicKey - the public key used to authenticate the authenticator

TicketService

$t kt Svc = new Ti cket Servi ce(voi d)

Creates an uninitialized ticket service object

DOC Intranet Architecture 67

M ethods

setURL
voi d $tkt Svc->set URL(string URL)

Sets or replaces the URL representing the well-known URL of the ticket service.
Parameters:

URL - the well-known ticket service URL

setPublicK ey
voi d $t kt Svc- >set Publ i cKey(string publicKey)

Sets or replaces the public key used to authenticate with this ticket service.
Parameters:

publicKey - the well-known ticket service public key string

getURL
string $tktSvc->get URL(voi d)

Return the well-known URL of the ticket service or an unbound value if not set.

getPublicK ey

string $tktSvc->get Publ i cKey(voi d)

Return the well-known ticket service public-key, or an unbound value if not set.

DOC Intranet Architecture 68

Appendix C: DOC Intranet Cryptography Overview

Version: 1.0
Revised: 2000.11.12

1 Introduction

This document describes cryptographic methods used in the Department of Commerce intranet
architecture. Cryptography is used to authenticate agents and to digitally sign documents. All
cryptography used is asymetric, utilizing a public key and private key pair. Key management is
beyond the scope of this document, but is assumed to occur in a directory service, in a PKI
infrastructure, or by manual exchange.

Two components in the intranet architecture utilize cryptography: the Inter-Application
Communication Protocol (IACP) and the Web-user Authentication Protocol (WAP).
Additionally, various intranet HT TP connections utilize SSL-based encryption. SSL is not
covered in this document.

The IACP uses digital signatures of nonce strings to authenticate parties participating in the
protocol. These digital signatures are conveyed by way of HTTP headers. As such, they must be
properly encoded to comply with HTTP header data transmission formats

WAP utilizes digital signatures of application tickets and session ticket. Both tickets are
transmitted in plaintext as HTTP headers. The digital signatures are transmitted as HTTP
headers, and must be properly encoded in a compliant HTTP header data transmission format.

This document covers two aspects:. digital signatures used in WAP and IACP, and the encoding
technigque used to transmit encrypted data via HTTP headers.

2 Digital Signatures

A digital signature is abinary string of data created using the signer's private key. Assuch, it
cannot be forged by anyone who does not possess the signer's private key.

For the purposes of the intranet architecture, al digital signatures are constructed using
techniques outlined in [FIPS186-2], Digital Signature Standard. The Digital Signature Standard
mandates SHA-1 for the message digest portion of the digital signature, but allows a choice of
algorithms for the digital signing step. All digital signatures covered by this document must use
the RSA digital signing algorithm.

3 Encoding for HTTP Transmission

Digital signatures as generated by the techniques outlined in section 2 are binary data, and as
such are not suitable for direct inclusion in aHTTP header. The BASE64 encoding scheme (see
[REC1521], Section 5.2) provides a method of encoding binary data into a string consisting
exclusively of the characters A-Z, a-z, 0-9, +, / and =.

DOC Intranet Architecture 69

There are two variants of this algorithm in common use. The first, which strictly abides by
[REC1521], limits the length of an encoded string to a maximum of 76 characters. Thisis
suitable for email headers, but not appropriate for many other general-purpose encodings. The
second variant removes this limitation, and encodes arbitrarily long strings. For usein HTTP
headers within the Department of Commerce's intranet, the second technique will be utilized.

Further, all encoded header values are to be enclosed in double quotes.

As an example, consider the case where the following digital signature has been created.
Digital Signature: akz&" 9zl "@' "' 73

Applying the BASE64 encoding scheme yields the following.
Base64 Encoding: YW aJi | 5emxeQ#4nl i E3Mn==

Finally, to transmit this signature in a header named APP_TICKET, the following header lineis
included.

APP_TICKET="YW aJi | 5enxeQ#4nl i E3Mn=="
4 References

[FIPS186-2] £ pg pyb 186-2: Digital Signature Standard, available
http://csrc.nist.gov/fips/fips186-2.pdf

[RFC1521] MIME (Multipurpose Internet Mail Extensions) Part One:

M echanisms for Specifying and Describing the Format of Internet
Message Bodies, available http://www.fags.org/rfcs/rfc1521.html

DOC Intranet Architecture 70

Appendix D: Directory Schema for the DOC Intranet
Directory Service

Version 1.0

Revised: 2000.11.12

1 Introduction
The directory service stores information about users and online applications in the DOC intranet,

as well as the complete organizational structure and other groups within DOC. This document
describes the schema used within the directory service.

2 Terminology
attribute

A single unit of information in an LDAP entry with an associated syntax. Analogousto a
field in a database record.

API
Application Programming Interface. A set of routines provided for a devel oper to access
programmatic functionality that has already been devel oped.

ces
Case Exact String. The syntax method for LDAP éattributes that indicates that values for
this attribute are case sensitive.

cis
Case Ignore String. The syntax method for LDARP attributes that indicates that values for
this attribute are not case sensitive.

cn
commonName. A common LDAP attribute. The textual or spoken proper name of an
entry.

dn

Distinguished Name. The fully qualified name of an LDAP entry. It is unique within the
directory, and comprised of the RDNSs of the entry from root.

DOC Intranet Architecture 71

DOC

IANA

IACP

1D

LDAP

Department of Commerce.

Internet Assigned Numbers Authority. The central coordinator for the assignment of
unique parameter values for Internet protocols.

Inter-Application Protocol. The Protocol used within the DOC intranet to alow online
applications to share information.

Internet Engineering Task Force. The international community of network designers,
operators, vendors, and researchers concerned with the evolution of Internet architecture.
Working groups within the IETF administer Requests For Comment (RFCs) that define
much of what has become standard in Internet architecture.

Intranet ID. The identifier for any entry in the DOC intranet directory service. The

I1D is unique in the entire directory service. For instance, an application cannot have the
same |ID as a person. It isastring composed of numbers and upper and lower case
letters, and is case-sensitive.

Lightweight Directory Access Protocol. Version 3 is defined in RFC2251. While the
protocol itself does not describe implementation details for a directory service, in
common usage the term is used to describe a directory server that supports the LDAP
protocol.

objectclass

OoIb

Anentry in an LDAP directory. Itiscomprised of acollection of required and optional
attributes. Although it is analogous to arecord in a database, attributes can be
multivalued- i.e. asingle entry may contain more than one value for a given attribute.

Object Identifier. Unique identifier used to identify LDAP objectclasses, attributes, and
syntax descriptions recognized by the Internet Engineering Task Force (IETF). Assigned
by Internet Assigned Numbers Authority (IANA).

DOC Intranet Architecture

72

ou

Organizational Unit. A common LDAP éttribute that has two conventional uses: to
contain pieces of aformal organization, such as Departments or Offices; or to
differentiate between categories within the directory itself, such as People and Printers.
For the schema described here, it is always used in the latter sense.

RDN

Relative Distinguished Name. The identifier which is unique to a given entry at its level
in the hierarchy. It is aways the leftmost portion of an entry’s dn.

uid

The LDAP abbreviation for userid. Thisis an optional attribute for docAppUser entries
which will be used when the docApp is alegacy application.

3 Overview
3.1 Directory Service Access

The directory service can be accessed for user and application information directly by a DOC
online application, but will typically be accessed viathe Directory API. Group information,
while stored in the directory service, is accessed only by the Group Service. The Group Service
is accessed via Inter-Application Communication Protocol (IACP).

Figure 1: Directory Subsystem Diagram, summarizes access to the Directory Service.

Access controls are described for each objectclass. The privileges described in this document
pertain to the normal users of the system. Other privileges may be granted to a DOC intranet
“superusers’ group, a directory service maintenance group, and other resource management
groups as DOC policy dictates, but are not included here.

For ageneral discussion of how LDAP access control is specified, see the OpenLDAP 2.0
Administrator’s Guide:

http://www.openl dap.org/doc/admin/sl apdconfig.html#A ccess Control
3.2 Directory Service Organization
There are three organizational units (ou’s) from root: apps, people, and groups. Every
application, person, and group has a unique identifier attribute, doclid, where 11D denotes

intranet ID.

Each application has a docApp entry that specifies public information about each online
application.

DOC Intranet Architecture 73

Each person has one docPer son entry, and zero or more docAppUser entries. The docPer son
entry contains conventional directory information for the person, such as addresses and
telephone numbers. Each docAppUser entry contains application-specific information
pertaining to the person.

The groups ou contains contains a further organizational level. Thislevel will specify the type
of group. Initial entries at this level will include DOC Org, External Org, Admins, and User
Defined. Under this leve live docGroup entries.

Figure 2: Directory Schema Diagram, summarizes the schema organization.

3.3 Common Attributes

The attributes shown below are used by most objectclasses defined in this document.
Attribute Name Syntax OID

ObjectClass cis, I-many | 2.5.4.0

Specifies the object classes of the object. Must include the object.

Doclid ces, 1 (local)

Specifies the Intranet 1D (11D) of the entry. Thisidentifier is specific to the DOC
intranet. Legal characters are numerals and upper and lower case characters.

The 1D is used by the intranet infrastructure and associated programs: it is never
entered or seen by a user of the system. Note that the syntax is case exact string, so an
1D of 1wR4 is different from 1IWRA4.

Cn cis, 1-many 2.5.4.3

commonName. Identifies the name of an object in the directory. When the object
corresponds to a person, the cn it iswill be the person's full name.

4 Application Entries
4.1 docApp Entries
4.1.1 The docApp Objectclass

Under the apps ou reside docApp entries. docApp entries contain public information about each
online application. The RDN for each docApp entry is doclid.

Note that a particular application may have severa instances running within the DOC intranet.
For example, severa offices may each use their own installation of agiven application. In this

DOC Intranet Architecture 74

case, each instance of the application will have a separate docApp entry. Asfar as the directory

is concerned, they are unrelated applications. The docCnAbbrev attribute must be unique
among docApps.

obj ect G ass docApp
requires
obj ect d ass,
doclid,
cn,
docCnAbbr ev,
docEntryUrl,
docl acpUr |,
docRequi r eSsl
al | owns
descri ption,
docRet ur nUr | Donai n,
docRet ur nUr | Pat h,
docAdmi n,
docG oupAut hori zed
4.1.2 docApp Attributes

Attribute Name Syntax OID

DocCnAbbrev cis, 1 (local)

An abbreviated version of the commonName (cn) attribute. This must be unique among
docApps. It should be easily to remember and refer to by humans, as it will be a useful
way to refer to an instance of a particular application by developers and frequent users
of an application.

DocEntryUrl ces, 1 (local)

The URL by which a user enters the application.

DoclacpUrl ces, 1 (local)

DOC Intranet Architecture 75

The URL used for Inter-Application Protocol requests.

DocRequireSs boolean, 1 | (local)

Whether or not authenticated users with an application ticket must access the application
viaan SSL connection.

Description cs 25.4.13

Description of the application.

DocReturnUrIDomain | cis, 1 (local)

The domain field of a cookie used by the application.

DocReturnUrlPath ces, 1 (local)

The path field of a cookie used by the application.

DocAdmin ces (local)

The I1D of the docGroup or docPer son that manages the application. If it isagroup, it
will normally be in the Admins group ou (see section 6.1).

DocGroupAuthorized | ces (local)

The I1D of a group authorized to use the application.

4.1.3 docApp Access Control

A group of docApp entries are granted read and lesser privileges (auth, compare, and search) to
the following attributes: doclid, cn, docEntryUrl, doclacpUrl, docRequireSsl, docCnAbbreyv,
description, docReturnUrIDomain, and docReturnUrIPath. This group will include the
Portal Server. As new applications are developed that require read access to docPer son entries,
they must be added to that group.

The WAP server and Group Server are granted read and lesser privilegesto all of the above
attributes, as well as docGroupAuthorized

The Directory Management docApp has full privileges. Users of the DOC intranet manipulate
directory entries solely through this application. While it has full privileges to directory
contents, it will govern an individual’s ability to view, add, or modify directory contents based
on its own internal configuration.

4.1.4 Example docApp Entry

DOC Intranet Architecture 76

dn: doclid=r4gF6, ou=apps, o=doc. gov

obj ectd ass: top

obj ect d ass: docApp

doclid: r4gF6

cn: DOC Sanple Online App for OHRM

docCnAbbrev: Sanpl eApp- OHRM

description: The DOC sanpl e application used by OHRM
docEntryUrl: http://host2.doc. gov/ sanpl eApp/ ohr m
doclacpUrl: http://host2.doc. gov/ sanpl eApp/ ohrni i acp
docRequi reSsl: TRUE

docRet ur nUr | Domai n: host 2. doc. gov

docRet urnUr | Pat h: /sanpl eApp/ ohr m

docAdmi n: r4h02

docG oupAut hori zed: r4h01

docG oupAut hori zed: r4h35

5 People Entries
5.1 docPerson Entries
5.1.1 The docPer son Objectclass
The highest objectClass under people is docPerson. The RDN for a docPer son is doclid.

For a person with multiple addresses, a postal Address attribute will contain each non-primary
address, while the primary address is divided into the other address part attributes to facilitate
location-based searching.

obj ect O ass docPerson
requires
obj ect d ass,
doclid,

cn

DOC Intranet Architecture

77

al | ows
sn,
gi venNarre,
generationQualifier,
di spl ayNane,
docShort D spl ayNane,
mai |,
t el ephoneNunber,
facsi m | eTel ephoneNunber,
mobi | e,
pager,
docQ her PhoneNunber ,
bui | di ngNane,
r oom\unber,
post al Addr ess,
street Addr ess,
physi cal Del i veryOF f i ceNane,
st,
post al Code

5.1.2 docPer son Attributes

Attribute Name Syntax OID

Sn cs 2544

surName. The person’s surname, aso referred to as last name or family name.

GivenName cs 25.4.42

Identifies the entry's given name, usually a person's first name.

DOC Intranet Architecture 78

GenerationQualifier

cs

25.4.44

Contains the generation Qualifier part of the name, typically appearing in the suffix, for

example:

generationQualifier:

DisplayName

as

2.16.840.1.113730.3.1.241

Preferred name of a person to be used when displaying entries. Especialy useful in
displaying a preferred name for an entry within a one-line summary list. Since other
attribute types, such as cn, are multivalued, they can not be used to display a preferred

name. For example:

di spl ayNane: Rob W/ son

docShortDisplayName

as

(local)

A short version of the display name. For example:

docShort D spl ayNane: Rob

Mail cis 0.9.2342.19200300.100.1.3
The person’s primary email address.
TelephoneNumber tel 2.5.4.20
The person’s telephone number.
Fax tel 25.4.23
facsimileTelephoneNumber. The fax number at which the person can be reached.
Mobile tel 0.9.2342.19200300.100.1.41
mobileTelephoneNumber. The person's mobile or cellular phone number.
Pager tel 0.9.2342.19200300.100.1.42
pagerTelephoneNumber. The person’s pager telephone number.
docOtherPhoneNumber cs 2.5.4.20

DOC Intranet Architecture

79

Another telephone numbers associated with the person followed by a short description
of the significance of the number. For example:

docQ her PhoneNunber: 202-555-1234 tel ecommuti ng

BuildingName cs 0.9.2342.19200300.100.1.48

The building name associated with the person.

RoomNumber cs 0.9.2342.19200300.100.1.6

The room number associated with the person.

Postal Address cs 25.4.16

Identifies the entry's mailing address. This field is intended to include multiple lines.

When represented in LDIF format, each line should be separated by a dollar sign ($).
To represent an actual dollar sign ($) or backslash (\) within this text, use the escaped
hex values \24 and \5c respectively.

Street as 2549

streetAddress. The person’s street number and name, for example:

street: 6789 Slippery Sl ope Rd NW

physicalDeliveryOfficeName | cis 25.4.19

Identifies the name of the city or village where a physical delivery office islocated. For
example:

physi cal Del i veryO fi ceNane: Bl acksburg

St cs 2548

stateOrProvinceName. |dentifies the state or province in which the entry resides.

Postal Code cs 25417

The person’s zip code (US) or postal code.

5.1.3 docPer son Access Control

A group of docApp entries are granted read and lesser privilegesto all attributes. This group
will include the Group Server. As new applications are developed that require read access to
docPer son entries, they must be added to that group.

DOC Intranet Architecture 80

The Directory Management docApp has full privileges. Privileges can be extended selectively
to users of the Directory Management application (such as the ability of an employee to change
their preferred name) based on rules internd to it.

5.1.4 Example docPerson Entry
dn: doclid=r4gE2, ou=peopl e, o=doc. gov
obj ectd ass: top
obj ect d ass: docPerson
doclid: rd4gE2
cn: Roberto J. WIson
sn: Wl son
gi venNane: Roberto
di spl ayNane: Rob W/ son
docShort D spl ayNane: Rob
mai | : wi | sonrj @oc. gov
t el ephoneNunber: 202-555-4567
facsi m | eTel ephoneNunber: 202-555- 4568
mobi | e: 202- 555- 4569
pager: 202-555-4570
docQt her PhoneNunber: 202-555-1234 tel ecommuti ng
bui | di ngNane: Buil di ng Xl
roomNunber: 3700
post al Address: PO Box 27553%Bl acksburg, VA 24063
street Address: 6789 Slippery Sl ope Rd NW
physi cal Del i veryO fi ceNane: Bl acksburg
st: VA

post al Code: 24060

DOC Intranet Architecture 81

5.2 docAppUser Entries
5.2.1 The docAppUser Objectclass

A docAppUser object specifies attributes for a docPer son associated with a particular docApp.
The docAppUser class or any class extending it would be placed under its corresponding
docPer son entry in the schema hierarchy.

The dn for this object will be composed of the doclid of the application, the doclid of the
person, the peopleou, and the doc.gov 0. The dn’s of the pertinent docPer son and docApp are
required attributes of the entry.

The docAppUser objectclassitself contains only one optional attribute, uid. Thisis used when
the user’s application userlD (logon id) is different from their intranet userID. If an application
wishes to use the directory service to store other parameters for each user, it is necessary to
extend the docAppUser objectClass.

obj ect C ass docAppUser
requires
obj ect d ass,
docPer son,
docApp
al | ows
ui d
5.2.2 docAppUser Attributes
Attribute Name Syntax OID

DocPerson ces (local)

The person to whom the entry applies. Specified by dn.

DocApp ces (local)

The application to which the entry applies. Specified by dn.

Uid cs 0.9.2342.19200300.100.1.1

userID. The person’s logon id for the given application.

5.2.3 docAppUser Access Control

DOC Intranet Architecture 82

Full privileges are granted to the docApp to which the entry refers for the uid attribute.

The Directory Management docApp has full privileges. Privileges can be extended selectively
to users of the Directory Management application based on rulesinterna to it.

5.2.4 Example docAppUser Entry
dn: docli d=r4gF6, docl i d=r 4gE2, ou=peopl e, o=doc. gov
obj ectd ass: top
obj ect d ass: docAppUser
docPerson: doclid=r4gE2, ou=people, o=doc.gov
docApp: doclid=r4gF6, ou=apps, o=doc.gov

uid: wilsonr4

6 Groups Entries
6.1 Types of Groups

There is a single organizational unit (ou) level beneath the group’ sou that specifies the type of
group. Initia entries at this level will include DOC Org, External Org, Admins, and User
Defined. Asthe DOC intranet is developed and once deployed, entries may be added at this
level to allow new types of groups.

Entries under the second level ou’s are of objectclass docGroup.

6.2 Organizational Groups

Organizational groups for most entities needing directory services are hierarchical, so a great
deal of effort was expended in the early years of directory technology to make the hierarchy of
the groups and subgroups the guideline for the directory hierarchy.

Experience reveaed that large complex entities undergo far too many structural changes to
continue to reorganize them based on the group structure.

For the DOC intranet, the directory server is not being used just for typical directory information
lookup. It isaso providing infrastructure information for the intranet to support application
needs such as authentication and authorization. For group information, it must answer queries
that are highly inefficient for both traditional directory structures and relational databases.

The Group Server (see Figure 1. Directory Subsystem Diagram) will help service these queries.
It will perform alarge number of queries to the directory service upon initialization or reload to
obtain the organizational group entries. Then it will cache the information in a data structure that
maximizes efficiency for the group queries.

DOC Intranet Architecture 83

The docGroups that live within a certain ou will al be directly under that ou, and will contain an
attribute that specifies the parent group. For the highest group in any hierarchy, the parent
attribute will contain the keyword null. Thiswill allow an easy means for the Group Server to
construct its data structure and allow easy modification of the group structure for system
administrators.

6.3 docGroup Entries
6.3.1 The docGroup Objectclass

docGroup entries contain information about each group, the group’s parent group, the group’s

managing group or person, and alist of group members. The RDN for each docGroup entry is
doclid.

For atop-level group, the docParentGr oup attribute contains the keyword null.

The docAdmin can contain the [1D of an individual or another group.
obj ect d ass docG oup
requires

obj ect d ass,

ou,
docli d,

cn,
docCnAbbr ev,

docPar ent Gr oup,
docAdmi n
al | ows
descri pti on,
docl nfolr |,
docMenber
6.3.2 docGroup Attributes

DOC Intranet Architecture 84

Attribute Name

Ou cs 25411

organizationalUnitName. For adocGroup entry, thiswill contain the ou under the
groups ou to which the group belongs.

DocCnAbbrev cs 1 (local)

An abbreviated version of the commonName (cn) attribute. This must be unique
among docGroups. It should be easily to remember and refer to by humans, as it will
be a useful way to refer to a group by developers and group members.

DocParentGroup cis 1 (local)
The dn of the parent group of this group. If the group is at the top of its hierarchy, then
it contains the keyword null.

DocGroupAdmin ces (local)

The 11D of the individua or group that manages the group. It islegitimate for this
value to be self-referential- for all members of the group to be able manage the group.

Description cs 25.4.13

Description of the group.

DoclnfoUrl ces (local)

URL associated with the group.

DocMember ces (local)

One entry for each member of the group. The IID can refer to an individual or a group.

6.3.3 docGroup Access Control

Full privileges are granted to the Group Server. Since even the Directory Management
application will use the Group Server for group information reading and changes, there is no
need to grant privilege to it.

6.3.4 Example docGroup Entry
dn: doclid=r4h01, ou=DOC O g, ou=groups, o=doc.gov
obj ectd ass: top

obj ect d ass: docG oup

DOC Intranet Architecture 85

doclid: r4h01

cn: Ofice of Goup Exanples

docPar ent G oup: r4h00

docAdm n:

r4gyi

docCnAbbrev: OOGE

description: An exanple group for the docO gG oup objectclass

docl nfolrl :

docMenber:
docMenber:
docMenber:
docMenber:
docMenber:

7 References

http://host 12. doc. gov/ exanpl eG oups/ OOGE/
u483i
K8Rr e
PHk2m
E3w22

v7Jes

[RFC2251] Lightweight Directory Access Protocol (v3)

http://www.fags.org/rfcs/rfc2251.html

Internet Engineering Task Force

http://www.ietf.org/

Internet Assigned Numbers Authority

http://www.iana.org/

Netscape Universal Schema Reference

http://devel oper.netscape.com/docs/manual g/directory/schema2/41/contents.htm

OpenLDAP 2.0 Administrator’'s Guide

http://www.openl dap.org/doc/admin/slapdconfig.html

DOC Intranet Architecture

86

Figure l: Directory Subsystem

Directory Subsystem

|
: < LDAP >
Directory .
: Management dir API
[
! IACP
| L »
|
- |
|
¢ IACP > Group e LDAP—»] Directory
App 1 dir API Service Service
|
|
| IACP
Le==\
\
\ »
App 2 LDAP >
d \ | -
Y LDAP >
\
\
\
\

DOC Intranet Architecture

Figure2: Directory Schema

o: doc.gov
ou: apps ou: groups
ou: people
ou: DOC Org
ou: External Org
OO0 ou: User
Defined
docApp
entry
ou: Managers
docPerson
entry
docGroup
entry
O
docAppUser
entry
DOC Intranet Architecture 88

Appendix E: Directory API for the DOC Intranet Directory
Service

Version 1.0

Revised: 2000.11.12

1 Introduction
Directory service and Group Service information needs to be accessed by many different

applications within the DOC intranet. The purpose of the APl isto provide easy access to that
information. This document describes the API for Java, Perl, and PHP.

2 Terminology

attribute

A single unit of information in an LDAP entry with an associated syntax. Analogousto a
field in a database record.

API
Application Programming Interface. A set of routines provided for a devel oper to access
programmatic functionality that has already been devel oped.

dn
Distinguished Name. The fully qualified name of an LDAP entry. It is unique within the
directory, and comprised of the RDNs of the entry from root.

DOC
Department of Commerce.

11D
Intranet ID. The identifier for any entry in the DOC intranet directory service. The
1D is unique in the entire directory service. For instance, an application cannot have the
same |ID as aperson. It isastring composed of numbers and upper and lower case
letters, and is case-sensitive.

LDAP

Lightweight Directory Access Protocol. Version 3 is defined in RFC2251. While the
protocol itself does not describe implementation details for a directory service, in

DOC Intranet Architecture 89

common usage the term is used to describe a directory server that supports the LDAP
protocol.

RDN

Relative Distinguished Name. The identifier that is unique to a given entry at itslevel in
the hierarchy. It isaways the leftmost portion of an entry’s dn.

3 Overview
3.1 Using the Directory API

The Directory APl provides applications an easy means of accessing DOC directory service and
Group Service information. Rather than making calls to the LDAP server and group server
directly, the application uses API calls that deal with networking, protocol, and data handling
issues. The programmer need only concentrate on the application they are trying to build.

A diagram showing the Directory API’s place in the directory portion of the DOC intranet
infrastructure isincluded in Figure 1. Directory Subsystem Diagram.

3.2 The docDirectory.conf File

A file named docDirectory.conf is associated with each of the libraries that implement the
Directory API. The file contains the hostname and port of the directory service, the hosthame
and port of the Group Service, and the application I1D and password for binding. The following
isasample docDirectory.conf.

HHHHHHHEBH R R R R B R R R R R
DocDirectory. conf

#

Configuration file for the DOC Directory APl library

BHEHBHBHBHBH R A B B H BB BB

| dapHost =<host nanme>

| dapPort =<port >

| dapHost =nyhost . mydomai n. gov

| dapPort =636

DOC Intranet Architecture 90

groupSer ver Host =<host nanme>

groupServer Port =<port >

gr oupSer ver Host =nyhost . nydomai n. gov

gr oupSer ver Port =7000

applid=<iid>

appPasswor d=<passwor d>

appl i d=zU80S
appPasswor d=nyapppassword
4 TheDirectory API for Java
4.1 The DocDirectory Class
To use the Directory API in Java, one obtains a DocDirectory object and calls its methods.

The DocDirectory object is obtained by calling the static get | nst ance method on the
DocDirectory class. Theget | nst ance method takes a single parameter, the name of the
docDirectory.conf file. The contents of the file are discussed in detail in the next section.

Once the DocDirectory object is obtained, a variety of methods are available to obtain
information from the directory service and Group Service.

4.2 Obtaining the DocDirectory Class

public static DocDi rectory getlnstance(String confFi|l eNane)
t hrows BadConfi gPar anmet er sExcepti on Fl XMVE
Parameters:
Conf Fi | eNane - The name of the docDirectory.conf file including path if necessary.
Returns:

A DocDirectory object initialized with the contents of the supplied conf file.

DOC Intranet Architecture

91

Throws:

BadConf i gPar anet er sExcept i on — The contents of the docDirectory.conf file did
not enable the DocDirectory object to establish a connection to the directory
service.

4.3 Retrieving App Information in Java

publ i c bool ean i sApp(String iid)
Parameters:
iid —ThellD of apotential application.
Returns:

Trueif the 11D corresponds to a docApp entry in the directory.
public Properties get AppAttributes(String applid)

t hrows NoSuchAppExcepti on
Parameters:
appl i d —ThellD of the application.
Returns:

A Properties object containing al of the application’s attributes for which the requesting
entity has read privilege.

Throws:

NoSuchAppExcept i on — The |ID supplied either does not exist, or does not
correspond to a docApp entry.

4.4 Retrieving Person Information in Java

publ i c bool ean i sPerson(String iid)
Parameters:
iid —ThellD of apotential person.
Returns:

Trueif the 11D corresponds to a docPer son entry in the directory.

DOC Intranet Architecture 92

public String getlidForUsernane(String usernane)
t hrows NoSuchPer sonExcepti on
Parameters:
user name — Theintranet uid of the person.
Returns:
The 1D of the person corresponding to the username.
Throws:

NoSuchPer sonExcept i on — The username supplied does not exist.

public Properties getPersonAttributes(String userlid)
t hrows NoSuchPer sonExcepti on
Parameters:
userlid —ThellD of the person.
Returns:

A Properties object containing all of the person’s attributes for which the requesting
entity has read privilege.

Throws:

NoSuchPer sonExcept i on — The lID supplied either does not exist, or does not
correspond to a docPer son entry.

public Vector getPeopleAttributes(String[] userlids,
String[] attributes)

throws NoSuchAttri but eException, InsufficientPrivilegeException

public Vector getPeopleAttributes(Vector userlids,

Vector attributes)

t hrows NoSuchAttri but eException, InsufficientPrivilegeException
Parameters:

userlid —Anarray or Vector of Strings that identify docPerson entries.

DOC Intranet Architecture

attri butes —Anarray or Vector of Strings containing the attributes that are to be
returned. It is not necessary to include docl i d in thislist, asit is always returned.

Returns:

A Vector containing Properties objects. Each Properties object contains one

docPer son's attributes for which the requesting entity has read privilege. If an object
that isnot a String is in the Vector or a String that does not correspond to a docPer son
Is encountered, it is ignored: no Exception is thrown.

Throws:

NoSuchPer sonExcept i on — The lID supplied either does not exist, or does not
correspond to a docPer son entry.

| nsuf ficientPrivil egeExcepti on —The binding entity does not have the
necessary privilege to read one or more attributes requested.

publ i c bool ean isPersonlnGoup(String userlid,
String grouplid)
t hrows NoSuchPer sonExcepti on, NoSuchG oupExcepti on
publ i ¢ bool ean i sPersonlnG oup(String userlid,
String grouplid,
bool ean recurse)

t hrows NoSuchPer sonExcepti on, NoSuchG oupExcepti on
Parameters:
userlid —ThellD of the person.
grouplid —ThellD of the group.

recur se - True causes the method to examine al subgroups for membership. False
causes the method to consider only direct membership in the group. If the
parameter is not present, defaults to true.

Returns:

True if the user is a member of the group, false otherwise.

DOC Intranet Architecture

Throws:

NoSuchPer sonExcept i on — The lID supplied either does not exist, or does not
correspond to a docPer son entry.

NoSuchG oupExcept i on — The lID supplied either does not exist, or does not
correspond to a docGroup entry.

public Vector get G oupsForPerson(String userlid)
t hr owns NoSuchPer sonExcepti on
public Vector get G oupsForPerson(String userlid, bool ean recurse)
t hr owns NoSuchPer sonExcepti on
Parameters:
userslid —ThellD of the person for whom group information is being requested.

recur se — True causes the method to return all supergroups. False causes the method
to return only groups in which the person has direct membership. If the parameter
IS not present, defaults to true.

Returns:

A Vector containing Strings that correspond to the [1Ds of groups in which the user isa
member.

Throws:

NoSuchPer sonExcepti on —ThelID supplied either does not exist, or does not
correspond to a docPer son entry.

public Vector get SubG oupsForUser(String userlid,
String superGouplid)
t hr ows NoSuchPer sonExcepti on, NoSuchG oupExcepti on
Parameters:
userlid —ThellD of the person.
super Groupl i d —ThellD of the group.
Returns:

A Vector containing Strings that correspond to the I1Ds of al subgroups that are
hierarchically under the superGroup in which the user is a member.

DOC Intranet Architecture 95

Throws:

NoSuchPer sonExcept i on — The lID supplied either does not exist, or does not
correspond to a docPer son entry.

NoSuchG oupExcepti on — ThelID supplied for superGroup either does not exist, or
does not correspond to a docGroup entry.

4.5 AppUser Information
4.5.1 Retrieving AppUser Information in Java

public Properties get AppUserAttributes(String userlid, String applid)
t hr ows NoSuchPer sonExcepti on, NoSuchAppExcepti on
Parameters:
userlid —ThellD of the person.
applid —ThellD of the application.
Returns:

A Properties object containing all of the appUser’ s attributes for which the requesting
entity has read privilege.

Throws:

NoSuchPer sonExcept i on — The lID supplied either does not exist, or does not
correspond to a docPer son entry.

NoSuchAppExcept i on — The IID supplied for app either does not exist, or does not
correspond to a docApp entry.

4.5.2 Setting AppUser Information in Java
public void set AppUserAttributes(String userlid,

String applid,
Properties changedAttri butes)

t hrows NoSuchPer sonExcepti on, NoSuchAppExcepti on,
NoSuchAt tri but eExcepti on

Parameters:

userlid —ThellD of the person.

DOC Intranet Architecture 96

applid —ThellD of the application.

changedAt tri but es — A Properties object containing the new values of the
attributes that are to be changed.

Throws:

NoSuchPer sonExcept i on — The lID supplied either does not exist, or does not
correspond to a docPer son entry.

NoSuchAppExcept i on — The IID supplied for app either does not exist, or does not
correspond to a docApp entry.

NoSuchAt t ri but eExcepti on —One or more attributes in the changedAttributes
Properties does not exist in the docAppUser entry.

| nsuf ficientPrivil egeExcepti on —The binding entity does not have the
necessary privilege to change one or more attributes it is attempting to change.

4.6 Retrieving Group Information in Java

public boolean isGoup(String iid)
Parameters:
iid —ThellD of apotential group.
Returns:

Trueif the 11D corresponds to a docGroup entry in the directory.

public Properties getGoupAttributes(String grouplid)
t hrows NoSuchG oupExcepti on
Parameters:
grouplid —ThellD of the group.
Returns:

A Properties object containing all of the group’s attributes for which the requesting
entity has read privilege.

Throws:

NoSuchG oupExcept i on — ThelID supplied either does not exist, or does not
correspond to a docGroup entry.

DOC Intranet Architecture 97

public int getGoupMenberCount(String grouplid)
t hrows NoSuchG oupExcepti on

public int getGoupMenberCount(String grouplid, bool ean recurse)
t hrows NoSuchG oupExcepti on

Parameters:
grouplid —ThellD of the group.

recur se — True causes the method to count members of the group and subgroups.
False causes only immediate members to be counted. If r ecur se isnot specified,
it istrue by default.

Returns:

The number of members in the group.

Throws:

NoSuchG oupExcept i on — ThelID supplied either does not exist, or does not
correspond to a docGroup entry.

public Vector getGoupMenbers(String grouplid, boolean recurse)

t hrows NoSuchG oupExcepti on

Parameters:
grouplid —ThellD of the group.

recur se — True causes the method to return members of the group and all subgroups.

False causes only immediate docPerson membersto bereturned. If recur se is
not specified, it is true by default.

Returns:

A Vector containing Strings which correspond to the I1Ds of the members of the group.
A member corresponds to a docPer son, not a subgroup of the group.

Throws:

NoSuchG oupExcept i on — The lID supplied either does not exist, or does not
correspond to a docGroup entry.

DOC Intranet Architecture 98

publ i c bool ean i sG oupWthinGoup(String grouplid,
String superGouplid)
t hrows NoSuchG oupExcepti on
public bool ean i sG oupWthinGoup(String grouplid,
String superGouplid,
bool ean recurse)

t hrows NoSuchG oupExcepti on

Parameters:

grouplid —ThellD of the subGroup.
super G oupl i d —ThellD of the superGroup.

recur se - True causes the method to examine the group and all subgroups for
membership. False causes the method to consider only immediate member groups.

If recur se isnot specified, it is true by default.

Returns:

True if the group is hierarchically contained by the superGroup, false otherwise.

Throws:

NoSuchG oupExcepti on — The lID supplied either does not exist, or does not
correspond to a docGroup entry.

public String getParentGoup(String grouplid)

t hrows NoSuchG oupExcepti on

Parameters:

grouplid —ThellD of the group.

Returns:

The 11D of the immediate parent of the group. If the group is the highest in its
hierarchy, returns an empty String.

Throws:

NoSuchG oupExcepti on — ThelID supplied either does not exist, or does not
correspond to a docGroup entry.

DOC Intranet Architecture

public Vector getSubG oups(String grouplid)
t hrows NoSuchG oupExcepti on
public Vector get SubG oups(String grouplid, bool ean recurse)
t hrows NoSuchG oupExcepti on
Parameters:

grouplid —ThellD of the group.

recur se - True causes the method to return all member groups and subgroups. False
causes only immediate member groups to be returned. If r ecur se isnot
specified, it is true by default.

Returns:

A Vector containing Strings corresponding to the [1Ds of the immediate subGroups of
the group. If the group is the lowest in its hierarchy, returns an empty Vector.

Throws:

NoSuchG oupExcepti on — ThelID supplied either does not exist, or does not
correspond to a docGroup entry.

DOC Intranet Architecture 100

5 TheDirectory API for Perl
5.1 The DocDirectory Object

The Perl Directory API library resides in a module named Doclntranet, which is contained in the
file DocIntranet.pm. To use the Directory APl in Perl, one creates a DocDirectory object and
calls methods on it.

The DocDirectory object’s handle is obtained by calling the new method of the DocDirectory
class. The new method takes the name of the docDirectory.conf file asits only parameter.

Once the DocDirectory handle is obtained, a variety of methods are available to obtain
information from the directory service and Group Service.

5.2 Obtaining a DocDirectory Handle
new

$docdir = new DocDirectory docdirectoryconffil enanme

Constructor. Creates a new DocDirectory handle initialized with the parameters of the
docDirectory.conf file. The docdirectoryconffilename parameter may include the file's path

if necessary.
5.3 Retrieving App Information in Per|

IS app
$docdi r->i s_app(iid)

Returnstrue if the iid corresponds to a docApp entry in the directory.

get_app_attrs
$docdi r->get _app_attrs(appiid)

Returns a hash containing al of the application’s attributes for which the requesting entity
has read privilege.

5.4 Retrieving Person Information inPer|
iS_person
$docdi r->i s_person(iid)

Returns true if the iid corresponds to a docPer son entry in the directory.

DOC Intranet Architecture 101

get_iid_for_uname

$docdir->get _iid_for_unane(usernane)
Returns a scalar containing the 11D of the user.

get_person_attrs

$docdir->get _person_attrs(useriid)

Returns a hash containing all of the user’s attributes for which the requesting entity has read
privilege.

get_people attrs

$docdi r->get _people_attrs(useriids, attributes)

Returns an array filled with hashes. Each hash contains one docPer son’s attributes for
which the requesting entity has read privilege. If any itemintheuseri i ds array does not
correspond to a docPer son entry, it is ignored.

Takes the following arguments:
useriids
An array containing the 11Ds that identify docPer son entries.

attributes

An array containing the attributes that are to be returned. It is not necessary to include
docli d inthislig, asit is aways returned.

iS person_in_group

$docdir->i s_person_in_group(useriid, groupiid[, recurse])

Returnstrue if the person is a member of the group, false otherwise. If the recurse
parameter is true, the method examines all subgroups for membership. False causes the
method to consider only direct membership in the group. If the parameter is not present,
defaults to true.

get_groups for_person

$docdi r->get _groups_for_person(useriid[, recurse])

Returns an array containing the 11Ds of groups in which the user is a member. The
keys of the array are numeric and arbitrarily assigned. If r ecur se istrue, the method
returns all supergroups. False causes the method to return only groups in which the
person has direct membership. If the parameter is not present, defaults to true.

DOC Intranet Architecture 102

get_subgroups for_person

$docdi r- >get _subgroups_for_person(useriid, supergroupiid)

Returns an array containing the 11Ds of all subgroups that are hierarchically under the
supergroup in which the user is a member.

5.5 AppUser Information
5.5.1 Retrieving AppUser Information in Perl
get_appuser_attrs
$docdi r- >get _appuser _attrs(useriid, supergroupiid)

Returns a hash containing all of the appUser’s attributes for which the requesting entity
has read privilege.

5.5.2 Setting AppUser Information in Perl
set_appuser_attrs

$docdi r- >set _appuser _attrs(useriid, appiid)

Returns a hash containing all of the appUser’s attributes for which the requesting entity
has read privilege.

5.6 Retrieving Group Information in Per|
is_group

$docdi r->i s_group(iid)

Returnstrue if the iid corresponds to a docGroup entry in the directory.
get_group_attrs

$docdir->get_group_attrs(groupiid)

Returns a hash containing al of the group’s attributes for which the requesting entity
has read privilege.

get_group_member_count

$docdi r- >get _group_nenber _count (groupi i d[, recurse])

Returns the number of members in the group.

DOC Intranet Architecture 103

If recurse is true, causes the method to count members of the group and subgroups.
False causes only immediate membersto be counted. If r ecur se isnot specified, it is
true by default.

get_group_members

$docdi r- >get _group_nenbers(groupiid[, recurse])

Returns an array containing the 11Ds of the members of the group. A member
corresponds to a docPer son, not a subgroup of the group. The keys of the array are
numeric and arbitrarily assigned.

If recurse is true, causes the method to return members of the group and al subgroups.
False causes only immediate docPer son membersto be returned. If r ecur se isnot
specified, it is true by default.

IS group_within_group

$docdi r->i s_group_wi thin_group(groupiid, supergroupiid[, recurse])
Returns true if the group is hierarchically contained by the supergroup, false otherwise.

If recur se istrue, the method examines the group and all subgroups for membership.
False causes the method to consider only immediate member groups. If recur se is
not specified, it istrue by default.

get_parent_group
$docdi r - >get _par ent _gr oup(groupi i d)

Returns the 11D of the immediate parent of the group. If the group is the highest in its
hierarchy, returns an empty string.

get_subgroups
$docdi r->get _groups(groupiid[, recurse])

Returns an array containing the 11Ds of the immediate subGroups of the group. If the
group is the lowest in its hierarchy, returns an empty array. The keys of the array are
numeric and arbitrarily assigned.

If recur se istrue, the method returns all member groups and subgroups. False causes
only immediate member groups to be returned. If r ecur se isnot specified, it istrue
by defauilt.

DOC Intranet Architecture 104

6 The Directory API for PHP
6.1 The docdirectory Object

To use the Directory APl in PHP, one creates a DocDirectory object and calls methods on it.

The DocDirectory object’s handle is obtained by calling the new method of the DocDirectory
class. The new method takes the name of the docDirectory.conf file asits only parameter.

Once the DocDirectory handle is obtained, a variety of methods are available to obtain
information from the directory service and Group Service.

6.2 Obtaining a docdirectory Handle
new

$docdi r = new docdirectory(docdirectoryconffil enane)

Constructor. Creates a new docdirectory object handle initialized with the parameters of the
docDirectory.conf file. The docdirectoryconffilename parameter may include the file's path

if necessary.
6.3 Retrieving App Information in PHP
iSApp

$docdi r- >i sApp(i i d)

Returns true if the iid corresponds to a docApp entry in the directory.
getAppAttrs

$docdi r - >get AppAt trs(appiid)

Returns an array containing all of the application’s attributes for which the requesting entity
has read privilege. The keys of the array are the names of the attributes.

6.4 Retrieving Person Information inPHP
isPerson
$docdi r->i sPerson(iid)
Returnstrue if the iid corresponds to a docPer son entry in the directory.

getlidForUname

$docdi r - >get | i dFor Unanme(user nane)

DOC Intranet Architecture 105

Returns the 11D of the user.

getPer sonAttrs

$docdi r - >get Per sonAttrs(useriid)

Returns an array containing all of the user’s attributes for which the requesting entity has
read privilege. The keys of the array are the names of the attributes.

getPeopleAttrs

$docdi r - >get Peopl eAttrs(useriids, attributes)

Returns an array filled with associative arrays. Each associative array contains one
docPer son’s attributes for which the requesting entity has read privilege. If any itemin the
useriids array does not correspond to a docPer son entry, it is ignored.

Takes the following arguments:
useriids

An array containing the 11Ds that identify docPer son entries.
attributes

An array containing the attributes that are to be returned. It is not necessary to include
docli d inthislist, asit is always returned.

isPer sonlnGroup

$docdi r - >i sPersonl nG oup(useriid, groupiid, recurse)

Returns true if the person is a member of the group, false otherwise. If the recurse
parameter is true, the method examines all subgroups for membership. False causes the
method to consider only direct membership in the group.

getGroupsFor Person

$docdi r - >get G oupsFor Per son(useriid, recurse)

Returns an array containing the 11Ds of groups in which the user isa member. The

keys of the array are numeric and arbitrarily assigned. If r ecur se istrue, the method
returns all supergroups. False causes the method to return only groups in which the
person has direct membership.

getSubgr oupsFor Per son

$docdi r - >get Subgr oupsFor Per son(useriid, supergroupiid)

DOC Intranet Architecture 106

Returns an array containing the 11Ds of all subgroups that are hierarchically under the
supergroup in which the user isamember. The keys of the array are numeric and
arbitrarily assigned.

6.5 AppUser Information
6.5.1 Retrieving AppUser Information in PHP
getAppuserAttrs
$docdi r - >get Appuser Attrs(useriid, supergroupiid)

Returns an array containing all of the appUser’ s attributes for which the requesting entity
has read privilege. The keys of the array are the names of the attributes.

6.5.2 Setting AppUser Information in PHP
setAppuser Attrs

$docdi r - >set Appuser Attrs(useriid, appiid)

Returns an array containing all of the appUser’ s attributes for which the requesting entity
has read privilege. The keys of the array must be the names of the attributes.

6.6 Retrieving Group Information in PHP
isGroup

$docdi r->i sG oup(iid)

Returnstrue if the iid corresponds to a docGroup entry in the directory.
getGroupAttrs

$docdi r - >get G oupAt trs(groupi i d)

Returns an array containing all of the group’s attributes for which the requesting entity has
read privilege. The keys of the array are the names of the attributes.

getGroupM ember Count
$docdi r - >get G oupMenber Count (groupi i d, recurse)
Returns the number of members in the group.

If recurse is true, causes the method to count members of the group and subgroups.
False causes only immediate members to be counted.

DOC Intranet Architecture 107

getGroupMembers
$docdi r - >get G oupMenber s(groupi i d, recurse)

Returns an array containing the 11Ds of the members of the group. A member
corresponds to a docPer son, not a subgroup of the group. The keys of the array are
numeric and arbitrarily assigned.

If recur se istrue, causes the method to return members of the group and al
subgroups. False causes only immediate docPer son members to be returned.

isGroupWithinGroup
$docdi r->i sG oupWt hi nG oup(groupiid, supergroupiid, recurse)

Returns true if the group is hierarchically contained by the supergroup, false otherwise.

If recur se istrue, the method examines the group and all subgroups for membership.
Fal se causes the method to consider only immediate member groups.

getParentGroup
$docdi r - >get Par ent G oup(gr oupi i d)

Returns the 11D of the immediate parent of the group. If the group is the highest in its
hierarchy, returns an empty string.

getSubgroups
$docdi r - >get G- oups(groupiid, recurse)

Returns an array containing the 11Ds of the immediate subGroups of the group. If the
group is the lowest in its hierarchy, returns an empty array. The keys of the array are
numeric and arbitrarily assigned.

If recur se istrue, the method returns all member groups and subgroups. False causes
only immediate member groups to be returned.

DOC Intranet Architecture 108

Figure 1. Directory Subsystem Diagram

|
: < LDAP >
Directory)
: Management dir AP
! IACP
| L »
|
- |
|
| ——IACP———>»
Group
App 1 dir API Service [€TLPAP—
|
|
| IACP
Le==\
\
\ »
App 2 LDAP »
\ | q
< \ LDAP »
\
\
\
\
L S

Directory
Service

DOC Intranet Architecture

109

Figure 2: Directory Schema Diagram

0: doc.gov
ou: apps ou: groups
ou: people
ou: DOC Org
ou: External Org
ou: User
Defined
docApp
entry
ou: Managers
docPerson
entry
docGroup
entry
docAppUser
entry

DOC Intranet Architecture 110

Appendix F: DOC Intranet Inter-Application
Communication Protocol

1 Introduction

This document defines the Department of Commerce Inter-Application Communication
Protocol (DOCIACP), by which participating applications within the Department of
Commerce Intranet can communicate with each other. Communications are carried on top of
the HTTP protocol. As such, the communications consist of exactly two participants,
referred herein as the client and the server. The client is the participant which initiates the
transaction, by requesting information from the server.

The goals of the DOCIACP include the following:

The server should be able to positively authenticate the client's identity

The server should be able to determine, based on the client's identity, what, if any,
information to provide to the client

The server should have the option of requiring an encrypted (SSL) link

Information exchange should be in XML when practicable, to provide ease of

interchange and manipulation. However, this should not exclude other content-types
from being returned by the servers when appropriate.

Both clients and servers should be easy to implement in a number of languages, including
at the minimum, Java, Perl and PHP

There should be awell defined interface for a client to determine what services are
available from the server, and what the calling convention is to receive those services

The DOCIACP protocol makes use of public key cryptography methods to accomplish its
authentication tasks. See[CRYPTOQ] for details.

This document does not cover the various issues related to storage and retrieval of public and
private keys, though it is expected that public keys will be stored in a directory service such a
defined by [DIRSV C] or as provided by athird party PKI implementation..

This document does not cover the Applications Programming Interfaces (API's) used on

either the client or server side to build applications. See [IACP-API] for specific information
on API's and usage.

2 Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

DOC Intranet Architecture 111

document are to be interpreted as described in RFC 2119 [RFC2119]. An implementation is
not compliant if it fails to satisfy one or more of the MUST or REQUIRED level
requirements for the protocols it implements. An implementation that satisfies all the MUST
or REQUIRED level and all the SHOULD level requirements for its protocols is said to be
"unconditionally compliant”; one that satisfies all the MUST level requirements but not all
the SHOULD level requirements for its protocols is said to be "conditionally compliant.”

The Inter-Application Communication Protocol provides a means of communication between
two participants, the client and the server. The communication is referred to herein as the
transaction.

2.1 DOCIACP Client Application Requirements

The client application MUST support communications with HTTP servers as described in
[RFC2616].

The client MAY support HTTPS client side communications, as defined in [SSL].
The client MAY support encryption and decryption as defined in [CRYPTQO].

Clients supporting encryption and decryption MUST have a public key / private key pair as
defined in [CRYPTOQ].

2.2 DOCIACP Server Application Requirements

The server application MUST support HyperText Transfer Protocol (HTTP), as described in
[REC2616].

The server application MAY support HTTPS, as described in [SSL].

The server application MAY support encryption and decryption as defined in [CRY PTQ)].

3 Terminology

APPLICATION_IID The name of the CGI variable which holds an application instance's
unique identifier.

client application A system which requests data from a server application via HTTP(S)
HTTP header A header field inaHTTP-response. See [RFC2616]

HTTP CGI parameter A URL-encoded or form encoded variablein aHTTP request. See
[REC2616]

nonce A server generated string containing some random component.
See Section 6.0 and [RFC2617].

server application A system that provides a service to client applications HTTP(S)

DOC Intranet Architecture 112

service A resource returned by a server in response to a HTTP(S) request
service name A string which identifies a service provided by a DOCIACP server.

service URL The URL by which the server is accessed for DOCIACP
communications.

4 Qverview

The DOCIACP protocol establishes a means of communications between a server and a
client within the Department of Commerce Intranet. Participating applications can be clients,
servers or both. For any given transaction, an application can be a client or server. If bi-
directional exchange of information is required, then multiple transactions must be executed.

Each server provides one or more services to clients. A service is simply an available
transaction by which the client makes a request for data. The client forms a request including
the service name and any other necessary HT TP CGI parameters to define the request, and
the server returns some amount of data in response to that request.

All services for a given server are accessed through a single URL known as the application’s
DOCIACP service URL. All requests must be viathe HTTP POST or GET methods. Since
all services are accessed viaa single URL, various CGI variables are set to indicate which
serviceis desired. For example, to access the catalog service, a CGl variable
'Service=Catalog' would be submitted with the request. The method of publishing these
well-known application specific DOCIACP service URL's is beyond the scope of this
document, but it is envisioned that they will be published in the directory service.

Every server providing DOCIACP servicesis required to provide at least one service, the
‘catalog service.! The catalog service is smply alisting of all the available services provided
by aserver. The catalog is returned as an XML document, conforming to a predefined
catalog service DTD. The catalog service will list al services (including itself) by service
name, along with the CGI parameters it accepts, and miscellaneous information such as
which parameters are optional, and descriptions of the service itself and each of its
parameters. Developers should refer to the catalog service on servers they intend to make
client connections to so as to ensure that the services and calling parameters are as expected.

Applications can be written in such away that administrators can configure which services
are turned on and which are turned off. The catalog service SHOULD correctly reflect only
the currently available services. The server MUST return a graceful 400 class error code if a
client requests a service that does not exist or is disabled.

Once a client decides to request a service from a server, the client preparesaHTTP POST
request, sets the service name and any other required HTTP CGI parameters, and sends the
request to the server.

At this point, the server may optionally require authentication of the client. See section 5.2.

DOC Intranet Architecture 113

Once the server's authentication and authorization requirements have been met, the server
examines the request, and prepares the document to return to the client. This document
would usually be an XML document, though it could be anything, including image files or
word processing documents. Asin HTTP, the type of the return document is communicated
back to the client via the Content-type HTTP header.

5 Protocol Definition

The DOCIACP protocol is built on top of HTTP 1.0 protocol. A new authorization scheme
isintroduced to provide public key based authentication. As part of this authentication
scheme, each instance of a DOCIACP application has a unique identifier caled the
APPLICATION_IID. The APPLICATION_IID isnot tied to a particular piece of software,
but rather, to a particular installed and running copy of the software. This allows serversto
decide with which applications they wish to share data on a fine-grained basis. For example,
agiven server may wish to only provide services to the installed copy of a client application
designated to handle a particular Bureau.

All applications, whether acting as client or server, require aunique APPLICATION_IID. If
an application serves as both a client and a server, then the same APPLICATION_IID is used
in both situations. The term APPLICATION_I1D may be qualified as a
CLIENT_APPLICATION_IID or aSERVER_APPLICATION_IID for purposes of
clarifying which application’s APPLICATION_IID isreferred to. Thisin no way indicates
that a single application has more than one APPLICATION_IID.

5.1 The DOCIACP Request

A transaction begins with a client constructing aHTTP 1.0 request for aservice. The
connection is made to a well-known service URL for the server. The following is an
example request for the catalog service from a server application.

POST /cgi-bin/I ACP_URL HTTP/ 1.0
Content -type: text/x-ww.-formurlencoded

Accept: text/xm

Ser vi ce=Cat al og
Sour ce=<CLI| ENT_APPLI CATI ON_| | D>

Table 1 summarizes the service request format. Note that the required? column refersto
whether it is a protocol violation to not return that item, not to whether or not the server will
have sufficient information to complete the request. For example, it is not a protocol
violation to not supply an Authorization header if so requested, but the server will amost
certainly not return the information desired by the client.

DOC Intranet Architecture 114

Table 1. Minimum DOCIACP Client Request Components

Item Type Name Vaue Required?
HTTP Request PCST <path to handl er> HTTP/ 1.0 YES

HTTP Header Cont ent - t ype: t ext / x- ww« f or m ur | encoded YES

HTTP Header Aut hori zati on: DOClI ACP <encoded nonce> NO

Cd Variable Servi ce <Servi ce Name> YES

CGE Variable Sour ce <CLI ENT_APPLI CATI ON_I | D> YES

See Section 5.2 for discussion of the Authorization header.

In addition to the components listed in Table 1, clients can supply additional headers and
CGl variables as defined by the HTTP specification, and as required as parameters to the
particular service being requested. In particular, clients may wish to include headers relating
to cache and proxy control. The server may or may not choose to use additional components.

5.2 The DOCIACP Authentication Scheme

On receiving arequest, the server may either service the request or demand authentication
information. Servers not requiring authentication merely construct a response, as per section
5.3.

The authentication process is per the HTTP 1.0 specification, with a new authentication type.
Servers requiring authentication return a "WWW-Authenticate DOCIACP_AUTH' line to the
client indicating that authentication is required. The DOCIACP_AUTH term denotes the
type of authorization required, and is the only authorization type defined by this protocol.
Servers and clients MAY also support BASIC or DIGEST authentication schemes per
[RFC2617].

The WWW-Authenticate header returned to the client also contains a'nonce’ (See

[RFC2617] for adefinition). A nonce is a pseudo-random string of characters which is used
as achallenge string. When a client receives a nonce as part of a WWW-Authenticate HTTP
header, the client is responsible for encrypting the nonce with the client's own private key,
and returning the encrypted nonce to the server in a Authorization header. Once the server
receives the Authorization header from the client, the server can verify the client's identity by
decrypting the nonce using the client's public key. Servers operating in non-SSL mode
should consider utilizing a nonce generation policy which guards against replay attacks. See
section 6.0 for details.

The following transcript describes a DOCIACP_AUTH transaction.
As above, the transaction begins with the client requesting access to a service.

POST /cgi-bin/1 ACP_URL HTTP/ 1.0

DOC Intranet Architecture 115

Content-type: text/x-ww+formurlencoded

Accept: text/xm

Ser vi ce=Cat al og
Sour ce=<CL| ENT_APPLI CATI ON_I | D>
This time, the server demands authentication.
HTTP/ 1.0 401 Unaut hori zed
Date: Fri, 31 Dec 1999 23:59:59 GwI
Server: <SERVER _APPLI CATI ON_I I D>
Content-type: text/plaintext
WANM Aut hent i cat e: DOCI ACP_AUTH aJg237YYYzp034r gPCK]

Here, the nonceis' alg237Y Y'Y zp034rgPOkj'. Upon receiving this, the client encrypts the
nonce using the client's private key, and resends the request, repeating back the plaintext
nonce in a Nonce header, and adding an Authorization header.

POST /cgi-bin/1 ACP_URL HTTP/ 1.0
Content-type: text/x-ww«formurlencoded
Accept: text/xm

Nonce: aJq237YYYzp034r gPCkK]

Aut hori zation: 3!'h&h2)!z94e] @2

Servi ce=Cat al og
Sour ce=<CL| ENT_APPLI CATI ON_I | D>

On receiving the Authorization HTTP header, the server must ook up the client’s public key,
and verify the authenticity of the client by decrypting the nonce using the key. If the nonce
decrypts correctly, then the client is authenticated. The server must then decide what, if any,
data to provide to the client.

DOC Intranet Architecture 116

5.3 The DOCIACP Response

If the server decides to service the request, it smply returns a page in accordance with the
HTTP 1.0 specification. No additional headers are required. An example response follows:

HTTP/ 1.0 200 OK
Date: Fri, 31 Dec 1999 23:59:59 GVl

Content-type: text/xnl

<?xm version="1.0"?>

<! DOCTYPE SYSTEM
"http://dtd. doc. gov/iacp_catal og. dtd">

<Cat al og>
<Servi ce>

<Ser vi ceNane>Cat al og</ Ser vi ceNane>

<Servi ceDescri pti on>
Ret urns XM. descri bing al
avai | abl e services

</ Servi ceDescri pti on>

<Ret ur nType>t ext / xm </ Ret ur nType>

</ Servi ce>
</ Cat al og>

Here, the server has returned a catalog containing only itself as a service.

6 Selection of Nonce values

Per [RFC2617], the nonce is a server-specified data string which should be uniquely
generated each time a 401 response is made. It is recommended that this string be base64 or
hexadecimal data. Specifically, since the string is passed in the header lines as a quoted
string, the double-quote character is not allowed.

The contents of the nonce are implementation dependent. The quality of the implementation
depends on a good choice.

DOC Intranet Architecture 117

Transactions which are not conducted over a secure SSL link are potentially susceptible to
replay attacks, in which third parties listening in on the transaction capture the Authorization
header, and resubmit the request using the stale Authorization header. A number of methods
of nonce selection are possible to minimize or eliminate the risks of such areplay attack.

First, replay attacks are not possible over SSL links. Servers wanting maximum protection of
their resources should make resources available only over SSL links.

Second, a timestamp can be encoded into the nonce. Authorization headers referencing a
given nonce are only accepted within some fixed amount of time beyond the timestamp
contained in the nonce. Since the nonce is encrypted with the client’s private key, third
parties could only use the nonce as stamped, limiting unauthorized disclosure.

Third, the client’ s IP address could be encoded into the nonce. This requires third parties to
both intercept the transaction, and successfully |P-spoof their address. Encoding the client’s
|P address into the nonce looses its effectiveness when proxies are involved, as spoofing
becomes unnecessary when the third party is able to go through the same proxy server as the
client.

Finally, the server can maintain alist of nonces it has given out, and remove a nonce from the
list when it isfirst submitted by any client. No other third party could not then replay the
Authorization header, as the nonce it refers to would no longer be valid. This technique
eliminates the possibility of replay attacks, at the cost of the server having to save generated
nonce values across consecutive connections.

The method used to generate the nonce as well as the server’s policy for nonce acceptance is
opaque to the client. Servers providing non-SSL encrypted service and wanting maximum
security SHOULD implement a one-time nonce policy.

7 Catalog Service Definition

The catalog service is the only service which al DOCIACP servers must implement. The
catalog service produces a xml document conforming to the catalog service DTD. The DTD
isasfollows

<?xm version="1.0" encodi ng="UTF-8"?>
<I ELEMENT Cat al og (Service+)>
<I ELEMENT Service (

Ser vi ceNane,

Servi ceDescri ption,

Ret ur nType?,

Ret ur nTypeDTD?,

DOC Intranet Architecture 118

Par anet er *) >
<I ELEMENT Par aneter (
Par amNane,
Par amDescri ption) >
<I ELEMENT Servi ceNane (#PCDATA) >
<! ELEMENT Servi ceDescri ption (#PCDATA) >
<! ELEMENT Ret urnType (#PCDATA) >
<! ELEMENT Ret ur nDTD (#PCDATA) >
<I ELEMENT Par amNanme (#PCDATA) >
<! ELEMENT Par anmDescri ption (#PCDATA) >

As specified in the DTD, the catalog service must return an XML document which includes
at least one service — the catalog service. Each service consists minimally of a Service Name
and a Service Description. The Service Name is the parameter used by clients to request the
service.

An example Catalog Service XML document follows.
<?xm version="1.0" encodi ng="UTF-8"7?>

<I DOCTYPE Cat al og SYSTEM
"http://dtd. doc. gov/iacp_catal og. dtd">

<Cat al og>
<Servi ce>

<Ser vi ceNane>Cat al og</ Ser vi ceNane>

<Servi ceDescri pti on>
Listing of all avail able services
fromthis DOCAI P server

</ Servi ceDescri pti on>

<Ret ur nType>t ext / xm </ Ret ur nType>

<Ret ur nDTD>

DOC Intranet Architecture 119

http://dtd. doc. gov/iacp_catal og. dtd
</ Ret ur nDTD>
</ Servi ce>
<Servi ce>
<Ser vi ceNane>Cet Dat eAsSt ri ng</ Ser vi ceNane>
<Servi ceDescri pti on>

Returns a Date-Tinme stanp as a
string.

EST i s assuned, set param
Cd =<ti nezone>

to override
</ Servi ceDescription>
<Ret ur nType>t ext/ pl ai nt ext </ Ret urnType>
<Par anet er >
<Par amNanme>Ti mezone</ Par amNane>
<Par amDescri pti on>

The tinme zone in which you wi sh
t he

returned string to be displayed.
</ Par anDescri pti on>
</ Par anet er >
</ Cat al og>

Here, the server identifies two services it provides. The first is of course the obligatory
catalog serviceitself. The second isatime of day service.

The time service has a service name of GetDateAsString. Clients wishing to access this
service must passin aHTTP CGI parameter Service=GetDateAsString.

The service returns a plaintext representation of a time-date stamp.

DOC Intranet Architecture 120

The service has a single parameter, named Timezone. Clients wishing to see the time
formatted to, for example, Pacific Standard Time will provide aHTTP CGI parameter

Timezone=PST.

8 I'ssues
Should clients be able to authenticate the server in non- SSL mode by sending its own nonce
in the regeust.
Should we expand the catalog service to delineste the allowable types and values for service
parameters.
9 References
[CRYPTO]. DOC Intranet Cryptographic Infrastructure
[DIRSVC] Directory Schema for the DOC Intranet Directory Service
HACP-APT boc Intranet IACP API and Tutorial
[RFC2119] Key words for use in RFCs to Indicate Requirement Levels (RFC 2119),
available http://www.fags.org/rfcs/rfc2119.html
[RFC2616]) bertext Transfer Protocol -- HTTP/1.1 (RFC 2616), available
http://www.fags.org/rfcs/rfc2616.html
[RFC2617] 477P Authentication: Basic and Digest Access Authentication available
http://www.fags.org/rfcs/rfc2617.html
[SSL]

The SSL Protocol, Version 3.0, available
http://home.netscape.com/eng/ssl 3/ssl-toc.html

DOC Intranet Architecture 121

Apendix G: DOC Inter-Application Communication Protocol
API

Version 1.0

Revised: 2000.11.12

1 Introduction

Applications within the DOC intranet can share information via the DOC Inter-Application
Communication Protocol (IACP). The purpose of the API is to provide an easy means for
programmers to supply and obtain information via IACP. This document describes APIs for
Java, Perl, and PHP.

2 Terminology
DOC

Department of Commerce.
IACP

Inter-Application Communication Protocol. The DOC protocol that this API facilitates.
See [IACP].

3 Overview
3.1 Using the IACP APIs

The IACP API provides applications an easy means of supplying and obtaining information via
IACP. The IACP library methods handle protocol details and perform networking so the
developer can concentrate on the application they are implementing rather than its environment
infrastructure.

An application supplying information via IACP uses the IACP Server API, and an application
that needs to obtain information via IACP uses the IACP Client API. If an application needs to
do both, it will use both.

The below diagram depicts use of the IACP AP .

DOC App 1 IACP < DOC App 2 IACP
IACP Request(s) Server
Client) 3
API IACP Response(s) "l ARl

DOC Intranet Architecture 122

The application supplying the IACP service (DOC App 2) shows intermediate arrow to the IACP
Server APl because it delegates requests to the lacpHandler rather than providing for it to handle
them directly.

4 Thel ACP Client API for Java

The IACP client API for Javais in package gov.doc.intranet. The primary classis lacpClient.

Y ou can discover an application's services viathe get Cat al og method. It returnsan array of
lacpSer vice objects. From these you can obtain the names and details of the application's
services. If you want to request from one of these services, the lacpClient provides

get Response() methods. The lacpClient handles whatever authentication is demanded by the
service transparently.

4.1 The lacpClient Class

An lacpClient object is used to request information from other applications via IACP. The
following depicts atypical use of an lacpClient.

lacpdient nyient = new lacpdient(M_IID, M_PRI VATE KEY);

nyd ient.setServicelrl (theServicelrl);

/**/

/* For a binary contents you can use |acpResponse directly. */
/**/
| acpResponse nyResponse,

Properti es paranProperties;

/| set appropriate service paraneters in paranProperties.

try {
nyResponse =
nmyd i ent. get Response("aBi naryServi ce", paranProperties);
} catch (1 CException exc) {
/1 handle it
} catch (AuthenticationException exc) {

// handle it

DOC Intranet Architecture 123

/* Now get the bytes for use. */

byte[] nyByteArray = nyResponse. get Bytes();

/***/

/* For other return types, use a subclass of |acpResponse. */

/***/

/* Get a StringlacpResponse. */

/| set appropriate service paraneters in paranProperties.

try {
nyResponse =
nmyd i ent. get Response("aStringServi ce", paranProperties);
} catch (I Oexception exc) {
/1 handle it
} catch (AuthenticationException exc) {

// handle it

/* Create the StringlacpResponse and get the String. */
Stringl acpResponse nyStri ngResponse;
try {

nyStri ngResponse = new Stringl acpResponse(nyResponse);
} cat ch(BadCont ent TypeExcepti on) {

/] handle it

DOC Intranet Architecture 124

String nyReturnString = nyStringResponse. getString();

/* CGet an Xm | acpResponse. */

/'l set appropriate service paraneters in paranProperties.

try {
nyResponse =
nyCd i ent. get Response("anXm Servi ce", paranProperties);
} catch (1 COException exc) {
/1 handle it
} catch (AuthenticationException exc) {

// handle it

/* Create the Xm | acpResponse and get the XML docunent. */
X | acpResponse nyXnl Response;
try {
nmyXm Response = new Xml | acpResponse(nyResponse) ;
} cat ch(BadCont ent TypeExcepti on) {
/1 handle it

try {
or g. w3c. dom Docunent nyDocunent = nyXm Response. get Docunent () ;
} catch (...Exception) {

// handle it

DOC Intranet Architecture 125

Signature
public class lacpClient extends Object

Congtructors
lacpClient

public lacpClient()

lacpClient
public lacpClient(String mylid,
java.security.PrivateKey myPrivateKey)
Parameters:
mylid - My application 1I1D.

myPrivateKey - The private key for my application. The lacpClient uses the private key
to use a service that requires authentication.

Methods

setlid

public void setlid(String mylid)
Parameters:

mylid - My application I1D.

setPrivateK ey

public void setPrivateKey(PrivateKey myPrivateKey)
Parameters:

myPrivateKey - The private key for my application. The lacpClient uses the private key
to use a service that requires authentication.

DOC Intranet Architecture 126

setServiceUrl|
public void setServiceUrl(URL serviceUrl)
Parameters:

serviceUrl - The URL of the IACP service from whom information will be requested.

getCatalog

public lacpService[] getCatalog()
Returns:

An array of lacpService objects. Each lacpService object describes a service available
from an application providing |ACP services.

getResponse
public lacpResponse getResponse(String serviceName)
Use this method if you don't need to send parameters to an IACP service.
Parameters:
serviceName - The name of the IACP service to be requested.
Returns:

An lacpResponse object. Unless the lacpResponse content is binary, it will probably be
used to initialize one of its subclasses, such as XmllacpResponse or StringlacpResponse.

getResponse
public lacpResponse getResponse(String serviceName,
Properties params)
Parameters:
serviceName - The name of the IACP service to be requested.

params - The parameters to be used as input to the IACP service.

DOC Intranet Architecture 127

Returns:

An lacpResponse object. Unless the lacpResponse content is binary, it will probably be
used to initialize one of its subclasses, such as XmllacpResponse or StringlacpResponse.

4.2 The lacpResponse Class

The lacpResponse object is used to obtain the information in the reply from an IACP service
request. It is returned by the lacpClient.getResponse method. If the information in the reply is
binary in nature, the lacpResponse.getBytes() method can be used to obtain the information in
raw binary form.

Subclasses of lacpResponse exist to facilitate obtaining a response of another content-type. If
your application wishes to provide a response in some proprietary or encoded form, you can
create a subclass of lacpResponse to help the consumer of of your IACP service information.

The following demonstrates the use of lacpResult for obtaining binary data.
| acpResponse nyResponse,
Properti es paranProperties;

/| set appropriate service paraneters in paranProperties.

try {
nyResponse =
nmyd i ent. get Response("aBi naryServi ce", paranProperties);
} catch (1 CException exc) {
/1 handle it
} catch (AuthenticationException exc) {

// handle it

/* Now get the bytes for use. */

byte[] nyByteArray = nyResponse. getBytes();

DOC Intranet Architecture 128

The following demonstrates use of the XmllacpResult subclass of lacpResullt.

/]l set appropriate service paraneters in paranProperties.

try {
nyResponse =
nyCd i ent. get Response("anXm Servi ce", paranProperties);
} catch (1 COException exc) {
/1 handle it
} catch (AuthenticationException exc) {

// handle it

/* Create the Xm |l acpResponse and get the XM. docunent. */
X | acpResponse nyXnl Response;
try {
nmyXm Response = new Xml | acpResponse(nyResponse) ;
} cat ch(BadCont ent TypeExcepti on) {

// handle it

try {
or g. w3c. dom Docunent nyDocunent = nyXm Response. get Docunent () ;

} catch (...Exception) {

/] handle it

DOC Intranet Architecture 129

Signature

public class | acpResponse extends Object

Variables

contentType

protected String contentType

content

protected byte content[]

Constructors

lacpResponse

protected lacpResponse()

lacpResponse
protected lacpResponse(String contentType,
byte content[])
Parameters:
contentType - The value of the content-type header field of the |ACP service response.

content - The content of the | ACP service response.

M ethods

getContentType

public String getContentType()

Returns:

DOC Intranet Architecture 130

The value of the content-type header field of the IACP service response.

getContent

public byte[] getContent()
Returns:

The content of the | ACP service response.

4.4 The XmllacpResponse Class

The XmllacpResponse object extends lacpResponse and adds the getXmlContent() method.

Signature
public class XmllacpResponse

extends lacpResponse

Congtructors

XmllacpResponse

public XmllacpResponse()

XmllacpResponse

public XmllacpResponse(lacpResponse response) throws BadContentTypeException
Parameters:
response - The lacpResponse obtained from the lacpClient.getResponse() method.
Throws. BadContentTypeException

If the content-type of the response is specified and is not "text/xml".

DOC Intranet Architecture 131

M ethods

setResponse

public void setResponse(lacpResponse response)

Throws. BadContentTypeException

If the content-type of the response is specified and is not "text/xml". Note that the
contents are set before the Exception is thrown, so it is ill possible to call the
getXmlContent() method, which you would expect to throw a parsing Exception. Thisis
included as a convenience in case the IACP service is improperly implemented.

getXmlContent

public Document getXmlIContent() throws I0OException
Returns:
The XML response in the form of a Document object.
Throws: |IOException

Thisis just a placeholder in the current XmllacpResponse specification. The actual
exceptions thrown will be implementation dependent.

4.5 The StringlacpResponse Class

The StringlacpResponse object extends lacpResponse and adds the getStringContent() method.
Signature

public class StringlacpResponse extends lacpResponse

Congtructors

StringlacpResponse

public StringlacpResponse()

DOC Intranet Architecture 132

StringlacpResponse
public StringlacpResponse(lacpResponse response) throws BadContentTypeException
Parameters:
response - The lacpResponse obtained from the lacpClient.getResponse() method.
Throws: BadContentTypeException

If the content-type of the response is specified and is not "text/plain”.

M ethods

setResponse

public void setResponse(lacpResponse response)
Throws: BadContentTypeException

If the content-type of the response is specified and is not "text/plain”. Note that the
contents are set before the Exception is thrown, so it is still possible to call the
getStringContent() method to obtain the results as a String. The normal way to do this
given that the content-type is not not specified as "text-plain”, however, would be to
convert the byte[] obtained from lacpResult.getContent() to a String. Thisisincluded as a
convenience in case the IACP service is improperly implemented.

getStringContent

public String getStringContent()

Returns:

The response in the form of a String.

4.6 The lacpService Class

The lacpService object describes an |ACP service provided by an application. An array of
lacpService objects is returned by the lacpClient.getCatalog() method. Each object is the
application's description of asingle IACP service it offers.

DOC Intranet Architecture 133

Signature

public class | acpSer vice extends Object

Variables

name

protected String name

description

protected String description

returnType

protected String returnType

returnDtd

protected String returnDtd

parameters

protected Properties parameters

Constructors

lacpService

protected lacpService()

lacpService

protected lacpService(String name,

DOC Intranet Architecture

134

String description)

lacpService

protected lacpService(String name,
String description,
String returnType,
String returnDtd,

Properties parameters)

M ethods

getName
public String getName()
Returns:

The name of the service.

getDescription
public String getDescription()
Returns:

A description of the service.

DOC Intranet Architecture

135

getReturnType

public String getReturnType()

Returns:

The returnType of the service. Note that returnType is optional to the catalog entry. If it
is not specified, this method returns null.

getReturnDtd
public String getReturnDtd()
Returns:

The ReturnDTD of the service. Note that thisis the string returned by the catalog: it has
not been checked for existence or validity. Note also that returnDTD is optional to the
catalog. If it is not specified, this method returns null.

getParameters
public Properties getParameters()
Returns:

The parameters accepted by the service asinput. Note that parameters are optional to the
service. If the service does not accept parameters, this method returns null.

4.7 The BadContentTypeException Class

Thrown by a subclass of |acpResponse when the content-type of the response is found to be
inappropriate for the subclass use in processing it.

Signature
public class BadContentTypeException extends | OException

Congtructors

BadContentTypeException

public BadContentTypeException()

DOC Intranet Architecture 136

Constructs a BadContentTypeException with no specified detail message.

BadContentTypeException

public BadContentTypeException(String msg)
Constructs a BadContentTypeException with the specified detail message.

5Thel ACP Server API for Java

The IACP server API for Javais also in package gov.doc.intranet. The primary classis
lacpHandler. Youinitialize an lacpHandler viathe exam neRequest method. You can
then get the parameters and relevant headers of the request, set the authentication scheme and
check for authorization, and use the lacpHandler to return avariety of failure responses.

5.1 The lacpHandler Class

An lacpHandler object is used to process requests from other applications vialACP. The
following depicts atypical use of an lacpHandler.

| acpHandl er myHandl er = new | acpHandl er (docDi rectory);

myHandl er . exani neRequest (htt pReq, httpRes);

/* This app may want to restrict access or custom ze response based
* on the identity of the requesting app
*/

String reqlid = nmyHandl er. get Requesterlid();

/* We can request paramaters individually by name or all at once. */

Properties paraneters = nyHandl er. get Paraneters();

String reqService = nyHandl er. get Regest edServi ce();
if (regService.equal s("catalog")) {

/* We have decided not to require authentication for the catalog

DOC Intranet Architecture

137

* service

*/

myHandl er . set Aut henti cati onScheme(AUTH_NONE)
/* note that nyCatal ogGenerati onMet hod contains a

* httpRes. set Content Type() call that sets the response
* content-type to "text/xm".

*/

myCat al ogGener ati onMet hod(...);

return;

/* The rest of our services use AUTH | ACP_TI ME_STAMP, so we can check
* authentication here rather than individually per service.
*/
myHandl er. set Aut henti cati onSchene(AUTH_I| ACP_TI ME_STAMP)
if (!nyHandl er.isAuthorized()) {
[* HTTP response code 401 */
myHandl er. demandAut henti cati on();

return;

}

if (regService.equal s("StringServicel”)) {
/* The catal og service has provided a ReturnType for this service of
* "text/plain". The nyStringServicelResponseMet hod contains a
* httpRes. set Content Type() call that sets the response content-type
* to "text/plain".
*/
myStringServi celResponseMet hod(. ..);

return;

DOC Intranet Architecture 138

} else if (reqgService.equal s("Xnm Service2")) {
/* The catal og service has provided a ReturnType for this service of
* "text/xm". The nyXm Servi ce2ResponseMet hod contains a
* httpRes. setContent Type() call that sets the response content-type
* to "text/xm".
*/
my Xm Ser vi ceResponse2Met hod(...);
return;
} else {
[* HTTP response code 404 */
myHandl er . r et ur nNot FoundError () ;
}
Signature
public class lacpHandler extends Object

Variables

AUTH_NONE

public static final int AUTH_NONE

Authentication scheme: Instructs the lacpHandler to ignore authentication.

AUTH_BASIC
public static final int AUTH_BASIC

Authentication scheme: Instructs the lacpHandler to use Basic authentication as described
in [RFC 2617].

AUTH_DIGEST

public static final int AUTH_DIGEST

DOC Intranet Architecture 139

Authentication scheme: Instructs the lacpHandler to use Digest authentication as
described in [RFC 2617].

AUTH_IACP_SIMPLE

public static final int AUTH_IACP_SIMPLE

Authentication scheme: Instructs the lacpHandler to use the |ACP authentication as

described in the protocol description. Neither time stamp or single-use techniques are to
be employed.

AUTH_IACP_TIME_STAMP

public static final int AUTH_IACP_TIME_STAMP

Authentication scheme: Instructs the lacpHandler to include a timestamp in the
authentication nonce and check that each returned nonce is no older than the age set by
setMaxNonceAge().

AUTH_IACP_SINGLE_USE

public static final int AUTH_IACP_SINGLE_USE

Authentication scheme: Instructs the lacpHandler to keep track of nonces so that it can
confirm that each nonce is used only once. Thisis not likely to be implemented in the
IACP version 1.0 library, and may throw an Illegal ArgumentException.

AUTH_IACP_SINGLE_USE_TIME_STAMP

public static final int AUTH_IACP_SINGLE_USE_TIME_STAMP

Authentication scheme: Combines AUTH_IACP_SINGLE_USE and
AUTH_IACP_TIME_STAMP. Thisis not likely to be implemented in the IACP version
1.0 library, and may throw an Illegal ArgumentException.

Constructors

lacpHandler

DOC Intranet Architecture 140

public lacpHandler(DocDirectory docDirectory)
Parameters:

docDirectory - A DocDirectory object.

M ethods

setMaxNonceAge

public void setMaxNonceAge(int age)

Specifies the maximum age of a returned authentication nonce. Meaningful only if a
time-stamp authentication scheme is used.

Parameters:

age - The maximum acceptable age of the nonce in seconds. If the parameter is not et it
defaults to 60.

setAuthenticationScheme

public void setAuthenticationScheme(int scheme)

Specifies the authentication scheme to be enforced by the handler. Default is
AUTH_IACP_TIME_STAMP.

examineRequest
public void examineRequest(HttpServletRequest req,
HttpServiletResponse res)

Causes the lacpHandler to process a request for IACP service, and suppliesit the
response object through which it may return a response if it is called upon to do so.

This must be called before any request-processing calls are made. The following methods
will throw NotlnitializedException if called before a call to examineRequest():

isAuthorized
getRequesterlid

getRequestedService

DOC Intranet Architecture 141

getParameter
getParameters
demandA uthentication
returnN oA cessError
returnNotFoundError
Parameters:
req - Theincoming servlet request.

req - The outgoing servlet response.

isAuthorized

public boolean isAuthorized()

Indicates that the request meets the requirements of the specified authentication scheme.
At thetimethat it is called, it checks that the provided Authorization passes the currently
specified authentication scheme. For |ACP authorization schemes, this includes
performing asymmetric decryption.

If the current authentication scheme is AUTH_NONE, the method returns true.

If false is returned, the lacpHandler must provide a response to the requester containing
HTTP response code 401 (Unauthorized) and a WWW-A uthenticate header specifying
the Authorization required of the request. To do so, call lacpHandler's

demandA uthentication method.

If aservice requires a greater level of authorization than |ACP authentication provides, it
can use the requester's I1D to decide if or what it should provide in the response. Should
the request fail the application’s requirements even though it provided IACP
authentication, call the lacpHandler's returnNoA ccessError method.

Returns:

Trueif avalid Authorization header is present in the request. If the authentication scheme
isset to AUTH_NONE, always returns true.

DOC Intranet Architecture 142

getRequesterlid
public String getRequesterlid()
Returns:

The 1D of the requesting application.

getRequestedService

public String getRequestedService()
Returns:

The name of the requested service. For instance, if the catalog service is requested,
"catalog”.

getParameter
public String getParameter(String paramName)
Parameters:
paramName - The parameter for which avaue is sought.
Returns:

The value supplied for the paranmName parameter. |f the parameter was not included in
the request, returns null.

getParameters
public Properties getParameters()
Returns:

A Properties containing the parameters supplied by the requester. If no parameters were
supplied by the requester, returns null.

DOC Intranet Architecture 143

demandAuthentication

public void demandAuthentication()

Respond to the requester that they are required to authenticate to access the requested
service. Causes the lacpHandler to respond with HTTP response code 401
(Unauthorized) and the appropriate WWW-Authenticate header given the specified
authentication scheme.

returnNoAccessError

public void returnNoAccessError()

Respond to requester that they have successfully authenticated, but are not allowed
access to the requested service. lacpHandler responds with HT TP response code 403
(Forbidden) .

returnNotFoundError

public void returnNotFoundError()

Respond to requester that the requested service is not available. lacpHandler responds
with HTTP response code 404 (Not Found).

5.2 The NotlnitializedException Class

Thrown by lacpHandler when the handler is asked to do work before it has been initialized via
the examineRequest method.

Signature
public class Notl nitializedException extends Object

Constructors

Notl nitializedException
public NotinitializedException()

Constructs a NotlnitializedException with no specified detail message.

DOC Intranet Architecture 144

Notl nitializedException

public NotlnitializedException(String msg)

Constructs a NotlnitializedException with the specified detail message.

6 Thel ACP Client API for Perl

The IACP client API for Perl resides in a module named DOClIntranet.pm. It uses CPAN
modules Exception and URI::URL. An implementation of this APl will also use an XML
module. The most likely candidate is the XML::Parser module. The implementation will also
use a module to assist with encryption and key handling.

The primary classis lacpClient. You can discover an application's services via the

get Cat al og method. It returnsan array of lacpService objects. From these you can obtain
the names and details of the application's services. If you want to request from one of these
services, the lacpClient providesget Response() methods. The lacpClient handles whatever
authentication is demanded by the service transparently.

6.1 The lacpClient Class

An lacpClient object is used to request information from other applications via IACP. The
following depicts atypical use of an lacpClient.

use Exception;
use URI:: URL,

use DOCl ntranet;

$nyCient = new lacpdient($M_I 1D, $MY_PR VATE KEY);

$nyd i ent->set ServiceUr | ($t heServicelrl);

#***

For a binary contents you can use |lacpResponse directly. *

#***

DOC Intranet Architecture 145

(set appropriate service paraneters in %assedParans.)

try {
$nyResponse =

$nyd i ent - >get Response(' aBi naryService', %assedParans);

catch DOCI ntranet:: | acpConnecti onException connExc =>
sub {
/1 handle it

return;

catch DOCl ntranet::|acpAut henticati onExcepti on aut hExc =>

sub {
handle it
return;

}

Now get the bytes for use.

$nyByt es = $nyResponse- >get Byt es();

#**

For other return types, use a subclass of |acpResponse. *

#**

Get an Xnl | acpResponse.

DOC Intranet Architecture 146

(set appropriate service paraneters in %assedParans.)

try {
$nyResponse =

$nmyd i ent - >get Response(' anXnl Servi ce', Y%passedPar ans) ;

$nmy Xn Response new Xm | acpResponse($nyResponse) ;

$ny Xm Docunent

$nmy Xm Response- >get Docunent () ;

catch DOCI ntranet:: |l acpConnecti onException connExc =>
sub {
handle it

return;

catch DOCIntranet:: | acpAut henti cati onExcepti on aut hExc =>

sub {
handle it
return;
}
Signature

package lacpClient ;
@ISA = (UNIVERSAL);
Constructor

$nylacpdient = new lacpdient([$nylid, $nyPrivateKey]);

DOC Intranet Architecture 147

Parameters:
mylid - My application I1D.

myPrivateKey - The private key for my application. The lacpClient uses the private key
to use a service that requires authentication.

Methods

setlid

$nylacpdient->setlid(nylid);
Parameters:

mylid - My application I1D.

setPrivateK ey
$nyl acpd i ent - >set Pri vat eKey(nyPri vat eKey) ;
Parameters:

myPrivateKey - The private key for my application. The lacpClient uses the private key
to use a service that requires authentication.

setServiceUr|
$nyl acpd i ent - >set Servi ceUr | ($t heServi celrl);

Parameters:

serviceUrl - The URI::URL of the IACP service from whom information will be
requested.

getCatalog
@ heServi ces = $nylacpd i ent->get Cat al og();

Returns:

DOC Intranet Architecture 148

An array of lacpService objects. Each lacpService object describes a service available
from an application providing IACP services.

getResponse

$nyl acpResponse = $nyl acpd i ent - >get Response($servi ceNane[, Yparans]);
Parameters:
serviceName - The name of the IACP service to be requested.

params - The parameters to be used as input to the IACP service. The keys are the param
names.

Returns:

An lacpResponse object. Unless the lacpResponse content is binary, it will probably be
used to initialize one of its subclasses, such as XmllacpResponse.

6.2 The lacpResponse Class

The lacpResponse object is used to obtain the information in the reply from an IACP service
request. It is returned by the lacpClient.getResponse method. If the information in the reply is
binary or a plain string, the lacpResponse->getContent() method can be used to obtain the
information in binary form or as a string.

Subclasses of lacpResponse exist to facilitate obtaining a response of another content-type. If
your application wishes to provide a response in some proprietary or encoded form, you can
create a subclass of lacpResponse to help the consumer of of your IACP service information.

The following demonstrates the use of lacpResult for obtaining binary data.
use Excepti on;
use URI:: URL:

use DOCl ntranet;

(set appropriate service paraneters in Y%assedParans.)

try {
$nyResponse =

DOC Intranet Architecture 149

nmyd i ent - >get Response(' aBi naryServi ce', Y%assedPar ans) ;

$nyByt es = $nyResponse. get Byt es();

catch DOCl ntranet::lacpConnecti onExcepti on connExc =>

sub {

handle it

return;

catch DOCI ntranet:: | acpAut henti cati onExcepti on aut hExc =>

sub {
handle it
return;

}

The following demonstrates use of the XmllacpResult subclass of lacpResullt.

use Exception;
use URI:: URL;

use DOCl ntranet;

(set appropriate service paraneters in paranProperties.)

try {
$nyResponse =

$nmyd i ent - >get Response(' anXnl Servi ce', Y%passedPar ans) ;

DOC Intranet Architecture

150

$nyXm Response = new Xnl | acpResponse($nyResponse) ;

$nyDocument = $nmyXm Response- >get Docunent () ;

catch DOCI ntranet:: Xm Par seExcepti on aut hExc =>

sub {
handle it
return;
}
Signature

package | acpResponse;
@ISA = (UNIVERSAL";

Constructor

$nmyResponse = new Response([$content Type, $content]);
Parameters:
contentType - The value of the content-type header field of the |ACP service response.

content - The content of the |ACP service response.

M ethods

getContentType
$t heCont ent Type = $nyResponse- >get Cont ent Type() ;

Returns the value of the content-type header field of the |ACP service response.

getContent
$t heCont ent = $nyResponse- >get Cont ent () ;

Returns the contents of the |ACP service response.

DOC Intranet Architecture 151

6.3 The XmllacpResponse Class

The XmllacpResponse object extends lacpResponse and adds the getXmlContent() method.
Signature

package XmllacpResponse;
@ISA = (lacpResponse);

Constructor

$nyXm Response = new Xml | acpResponse($t hel acpResponse);

Will throw a DOClntranet::BadContentTypeException if the content-type of the response
is specified and is not "text/xml".

Parameters:

response - The lacpResponse obtained from the lacpClient->getResponse() method.

M ethods

setResponse
$myXm Response- >set Response($nyl acpResponse) ;

Throws DOClntranet::BadContentTypeException if the content-type of the responseis
specified and is not "text/xml". Note that the contents are set before the Exception is
thrown, so it is still possible to call the getXmlContent() method, which you would
expect to throw a parsing Exception. Thisis included as a convenience in case the IACP
service is improperly implemented.

getXmlContent
$nyXm Docunent = $nmyXm Response- >get Xm Cont ent () ;

Returns the XML response. Thiswill be an object to be determined by implementation.

Throws DOClntranet:: X ML ParseException if it is unable to parse the delivered XML.

Thisisjust a placeholder in the current XmllacpResponse specification. The actual
exceptions thrown will be implementation dependent.

DOC Intranet Architecture 152

6.4 The lacpService Class

The lacpService object describes an |ACP service provided by an application. An array of
lacpService objects is returned by the lacpClient->getCatalog() method. Each object is the
application's description of asingle IACP service it offers.

Signature
package lacpService;
@ISA = (UNIVERSAL";

Constructor

lacpService
$nyl acpService = new | acpServi ce(
[$nane,
description[,
returnType,
returnDtd,

paraneters]]);

M ethods

getName

$nanme = $nyl acpServi ce->get Nane();

Returns the name of the service.

getDescription
$description = $nyl acpServi ce->get Descri ption();

Returns a description of the service.

DOC Intranet Architecture 153

getReturnType

$returnType = $nyl acpServi ce- >get Ret ur nType() ;

Returns the content-type of the service. Note that content-type is optional to the catalog

entry. If it is not specified, this method returns null.

getReturnDtd

$returnDtd = $nyl acpServi ce->get ReturnDt d();

Returns:

The ReturnDTD of the service. Note that thisis the string returned by the catalog: it has

not been checked for existence or validity. Note also that returnDTD is optional to the
catalog. If it is not specified, this method returns null.

getParameters

Y%passedParans = $nyl acpServi ce- >get Paraneters();

Returns:

The parameters accepted by the service as input. Note that parameters are optional to the

service. If the service does not accept parameters, this method returns null.

6.5 The BadContentTypeException Class
Signature

package BadContent TypeException;
@ISA = ('Exception’);

Constructor

$exc = new BadCont ent TypeException();

Constructs a BadContentTypeException.

DOC Intranet Architecture

154

6.6 The XmlPar seException Class
Signature

package XmlPar seException;
@ISA = ('Exception’);

Constructor

$exc = new Xm Par seException();

Constructs a XmlParseException.

6.7 The lacpConnectionException Class

Signature
package | acpConnectionException;
@ISA = ('Exception’);

Constructor

$exc = new | acpConnecti onException();

Constructs a lacpConnectionException.

6.8 The lacpAuthenticationException Class
Signature

package lacpConnectionException;
@ISA = ('Exception’);

Constructor

$exc = new | acpConnecti onException();

Constructs an lacpConnectionException.

DOC Intranet Architecture

155

7 Thel ACP Server API for Perl

The IACP server AP for Perl isaso in DOClntranet.pm. It uses the CPAN module Exception.

The primary classis lacpHandler. You can use it to get the parameters and relevant headers of
the request, set the authentication scheme and check for authorization, and to return a variety of
failure responses.

7.1 The lacpHandler Class

An lacpHandler object is used to process requests from other applications via IACP. The
following depicts atypical use of an lacpHandler.

$nmyHandl er = new | acpHandl er ();

try {

$nyHandl er - >examn neRequest () ;

catch DOCl ntranet:: SomeExcepti on exc =>
sub {
handle it

return;

This app may want to restrict access or custon ze response based

on the identity of the requesting app.

$reqglid = $nmyHandl er - >get Requesterlid();

We can request paramaters individually by name or all at once.

DOC Intranet Architecture 156

%par ans = $myHandl er - >get Par anet ers() ;

$reqgServi ce = $nyHandl er - >get Reqgest edSer vi ce();

if ($reqService cnp 'catalog') {

We have decided not to require authentication for the catal og

service.

$reqServi ce- >set Aut henti cati onSchene($AUTH_NONE) ;

Note that nyCatal ogGenerati onMet hod sets the response content-type

to "text/xm".

&nyCat al ogGener ati onMet hod(...);

return;

The rest of our services use $AUTH | ACP_TI ME_STAMP, so we can check

authentication here rather than individually per service.

$nyHandl er - >set Aut hent i cati onSchene($AUTH | ACP_TI ME_STAMP) ;

i f (!$myHandl er->i sAut horized()) {

HTTP response code 401

$nyHandl er - >demandAut henti cati on();

return;

DOC Intranet Architecture 157

if ($reqService cnp 'StringServicel') {

The catal og service has provided a ReturnType for this service of
"text/plain". The nyStringServicelResponseMethod should set the

response content-type to "text/plain".

&y StringServi celResponseMet hod(...);

return;

} elsif ($reqService cnp ' Xnl Service2') {

The catal og service has provided a ReturnType for this service of
"text/xm". The nyXm Servi ce2ResponseMet hod shoul d set the

response content-type to "text/xm".

&y Xm Ser vi ceResponse2Met hod(...);
return;

} else {

HTTP response code 404

$nyHandl er - >r et ur nNot FoundError () ;

}
Signature

package | acpHandler;

@ISA = (UNIVERSAL);

DOC Intranet Architecture 158

Variables

$AUTH_NONE

Authentication scheme: Instructs the lacpHandler to ignore authentication.

$AUTH_BASIC

public static fina int AUTH_BASIC

Authentication scheme: Instructs the lacpHandler to use Basic authentication as described in
[RFC 2617].

$AUTH_DIGEST

Authentication scheme: Instructs the lacpHandler to use Digest authentication as described in
[RFC 2617].

$AUTH_IACP_SIMPLE

Authentication scheme: Instructs the lacpHandler to use the |ACP authentication as described in
the protocol description. Neither time stamp or single-use techniques are to be employed.

$AUTH_IACP_TIME_STAMP

Authentication scheme: Instructs the lacpHandler to include a timestamp in the authentication
nonce and check that each returned nonce is no older than the age set by setMaxNonceAge().

$AUTH_IACP_SINGLE_USE

Authentication scheme: Instructs the lacpHandler to keep track of nonces so that it can confirm
that each nonce is used only once. Thisis not likely to be implemented in the IACP version 1.0
library, and may throw an Illegal ArgumentException.

$AUTH_IACP_SINGLE_USE_TIME_STAMP

DOC Intranet Architecture 159

Authentication scheme: Combines AUTH_IACP_SINGLE_USE and
AUTH_IACP_TIME_STAMP. Thisis not likely to be implemented in the IACP version 1.0
library, and may throw an Illegal ArgumentException.

Constructor

$nyl acpHandl er = new | acpHandl er ($docDi rectory);

Parameters:

docDirectory - A DocDirectory object.

M ethods

examineRequest

$nyl acpHandl er - >exam neRequest () ;

Causes the lacpHandler to determine that sufficient information about the request is
available to respond to subsequent method calls.

Throws exceptions to be determined at implementation.

setM axNonceAge
$nyl acpHandl er - >set MaxNonceAge($age) ;

Specifies the maximum age of a returned authentication nonce. Meaningful only if a
time-stamp authentication scheme is used.

Parameters:

age - The maximum acceptable age of the nonce in seconds. If the parameter is not set, it
defaults to 60.

setAuthenticationScheme

$nyl acpHandl er - >set Aut hent i cati onSchene($schene);

DOC Intranet Architecture 160

Specifies the authentication scheme to be enforced by the handler. Default is
$AUTH_IACP_TIME_STAMP.

isAuthorized

$aut h = $nyl acpHandl er->i sAut hori zed();

Indicates that the request meets the requirements of the specified authentication scheme.
At thetimethat it is called, it checks that the provided Authorization passes the currently
specified authentication scheme. For | ACP authorization schemes, thisincludes

performing asymmetric decryption.

If the current authentication scheme is SAUTH_NONE, the method returns true.

If false is returned, the lacpHandler must provide a response to the requester containing
HTTP response code 401 (Unauthorized) and a WWW-Authenticate header specifying
the Authorization required of the request. To do so, call lacpHandler's

demandA uthentication method.

If aservice requires a greater level of authorization than |ACP authentication provides, it
can use the requester's 11D to decide if or what it should provide in the response. Should

the request fail the application’s requirements even though it provided IACP
authentication, call the lacpHandler's returnNoA ccessError method.

getRequesterlid
$reqlid = $nyl acpHandl er - >get Requesterlid();

Returns the 11D of the requesting application.

getRequestedService
$servi ceNanme = $nyl acpHandl er - >get Request edSer vi ce() ;

Returns the name of the requested service. For instance, if the catalog serviceis
requested, ‘catalog'.

getParameter
$par anVal ue = $nyl acpHandl er- >get Par anet er ($par anNane) ;

DOC Intranet Architecture

161

Returns the value supplied for the paramName parameter. If the parameter was not
included in the request, returns null.

Parameters:

paranName - The parameter for which avalue is sought.

getParameters

%par ans = $nyl acpHandl er - >get Paraneters();
Returns:

A hash containing the parameters supplied by the requester. If no parameters were
supplied by the requester, returns null.

demandAuthentication

$nyHandl er - >denandAut henti cati on();

Respond to the requester that they are required to authenticate to access the requested
service. Causes the lacpHandler to respond with HTTP response code 401
(Unauthorized) and the appropriate WWW-Authenticate header given the specified
authentication scheme.

returnNoAccessError

$nyHandl er - >r et ur nNoAccessError ();

Respond to requester that they have successfully authenticated, but are not alowed
access to the requested service. lacpHandler responds with HT TP response code 403
(Forbidden) .

returnNotFoundError

$nyHandl er - >r et ur nNot FoundError () ;

Respond to requester that the requested service is not available. lacpHandler responds
with HTTP response code 404 (Not Found).

DOC Intranet Architecture 162

7.2 The Illegal ArgumentException Class
Signature

package |1legal ArgumentException;
@ISA = ('Exception’);

Constructor

$exc = new ||| egal Argunent Excepti on();

Constructs an |llegal ArgumentException.

7.3 The NotlnitializedException Class
Signature

package Notl nitializedException;
@ISA = ('Exception’);

Constructor

$exc = new NotlnitializedException();

Constructs an NotlnitializedException.

DOC Intranet Architecture

163

8 Thel ACP Client API for PHP

The IACP client API for PHP isin library file DOClntranet.inc. The primary classis

lacpClient. You can discover an application's services viaits get Cat al og method. It returns
an array of lacpService objects. From these you can obtain the names and details of the
application's services. If you want to request from one of these services, the lacpClient provides
get Response() methods. The lacpClient handles whatever authentication is demanded by the
service transparently.

8.1 The lacpClient Class

An lacpClient object is used to request information from other applications via IACP. The
following depicts atypical use of an lacpClient.

i nclude "DOCl ntranet.inc";

$nydient = new |lacpdient($MY_IID, $MY_PRI VATE KEY);

$nyd i ent - >set Servi celUr | ($t heServi ceUrl);

/**/

/* For a binary contents you can use |acpResponse directly. */

/**/

/| (set appropriate service paraneters in $paramirray.)

$nyResponse =

$nyd i ent - >get Response(" aBi naryServi ce", $paranmirray);

i sSet ($nyResponse) OR switch($doc_errno)
{

/* W would test for case O if the function could intentionally

** return a null. This function will never intentionally

DOC Intranet Architecture 164

** return a null, so we skip it.

*/

case CONNECTI ON_ERROR
/1l handle it, possibly return fromthis function
br eak;

case AUTHENTI CATI ON_ERRCOR
/1 handle it, possibly return fromthis function

br eak;

/* Now get the bytes for use. */

$nyByt es = $nyResponse- >get Byt es();

/***/

/* For other return types, use a subclass of |acpResponse. */

/***/

/* Get an Xm | acpResponse. */

/'l (set appropriate service paraneters in $paramArray.)

$nyResponse =

$nyd i ent - >get Response("anXn Servi ce", $paranmArray);

i sSet ($nmyResponse) OR swi tch($doc_errno)
{

/* W would test for case O if the function could intentionally

DOC Intranet Architecture 165

** return a null. This function will never intentionally
** return a null, so we skip it.
*/
case CONNECTI ON_ERROR
/1 handle it, possibly return fromthis function
br eak;
case AUTHENTI CATI ON_ERRCOR
/1 handle it, possibly return fromthis function

br eak;

$nyXm Response = new Xnl | acpResponse($nyResponse) ;

i sSet ($nmyXm Response) OR swi t ch($doc_errno)

{
/* W would test for case O if the function could intentionally
** return a null. This function will never intentionally
** return a null, so we skipit.
*/
case XM._ERRCR
/1l handle it, possibly return fromthis function
br eak;
}

$nyXm Cbj ect = $nyXm Response- >get Xm Cbj ect () ;

DOC Intranet Architecture 166

Signature

classlacpClient;

Constructor

$nylacpdient = new lacpdient(string nylid, string nyPrivateKey);
Parameters:
mylid - My application 1I1D.

myPrivateKey - The private key for my application. The lacpClient uses the private key
to use a service that requires authentication. Here it is declared a string, but in
implementation it may be an object.

Methods

setServiceUr|

voi d $nylacpdient->setServicelUl(string theServiceUrl);
Parameters:

serviceUrl - The URL of the IACP service from whom information will be requested.
Here it is declared a string, but in implementation it may be an object.

getCatalog

| acpServi ce $servicesArray = $nylacpd i ent->get Cat al og();
Returns:

An array of lacpService objects. Each lacpService object describes a service available
from an application providing IACP services.

getResponse

| acpResponse $nyl acpResponse =

$nyl acpd i ent - >get Response(string servi ceNane, array parans);

Parameters:

DOC Intranet Architecture 167

serviceName - The name of the IACP service to be requested.

params - The parameters to be used as input to the IACP service. The keys are the param
names.

Returns:

An lacpResponse object. Unless the lacpResponse content is binary, it will probably be
used to initialize one of its subclasses, such as XmllacpResponse.

8.2 The lacpResponse Class

The lacpResponse object is used to obtain the information in the reply from an IACP service
request. It is returned by the lacpClient.getResponse method. If the information in the reply is
binary or a plain string, the lacpResponse->getContent() method can be used to obtain the
information in binary form or as a string.

Subclasses of lacpResponse exist to facilitate obtaining a response of another content-type. If
your application wishes to provide a response in some proprietary or encoded form, you can
create a subclass of lacpResponse to help the consumer of of your IACP service information.

The following demonstrates the use of lacpResult for obtaining binary data.
i ncl ude "DCCl ntranet.inc";
/'l (set appropriate service paraneters in $paramArray.)
$nyResponse =

$nyd i ent - >get Response("aBi naryServi ce", $paranArray);

i sSet ($nmyResponse) OR swi tch($doc_errno)

{
/* W would test for case O if the function could intentionally
** return a null. This function will never intentionally
** return a null, so we skip it.
*/

case CONNECTI ON_ERRCOR:

DOC Intranet Architecture 168

/1 handle it, possibly return fromthis function

br eak;

case AUTHENTI CATI ON_ERROR:

/1l handle it, possibly return fromthis function

br eak;

/* Now get the bytes for use. */

$nyByt es = $nyResponse- >get Byt es();

The following demonstrates use of the XmllacpResult subclass of lacpResullt.

i ncl ude "DOCl ntranet.inc";

/'l (set appropriate service paraneters in $paramArray.)

$nyResponse =

$nyd i ent - >get Response("anXm Servi ce", $paranmArray);

i sSet ($nmyResponse) OR swi tch($doc_errno)

{
/* W would test for case O if the function could intentionally
** return a null. This function will never intentionally
** return a null, so we skip it.
*/

case CONNECTI ON_ERRCR

DOC Intranet Architecture 169

/1 handle it, possibly return fromthis function
br eak;
case AUTHENTI CATI ON_ERRCR
/1l handle it, possibly return fromthis function
br eak;
}

Signature

classlacpResponseg;

Constructor

$nyResponse = new Response(string content Type, string content);

Parameters:
contentType - The value of the content-type header field of the |ACP service response.

content - The content of the |ACP service response.

M ethods

getContentType
string $theCont ent Type = $nyResponse- >get Cont ent Type();

Returns the value of the content-type header field of the IACP service response.

getContent
string $theContent = $nyResponse->get Content ();

Returns the contents of the | ACP service response.

DOC Intranet Architecture 170

8.3 The XmllacpResponse Class

The XmllacpResponse object extends lacpResponse and adds the getXmlContent() method.
Signature

class XmllacpResponse extends |acpResponse;

Constructor

$nyXm Response = new Xmi | acpResponse(| acpResponse t hel acpResponse);

Will set $doc_errno to BAD_CONTENT_TYPE if the content-type of the response is
specified and is not "text/xml".

Parameters:

response - The lacpResponse obtained from the lacpClient->getResponse() method.

M ethods

getXmlContent
obj ect $nyXm Docunent = $nyXnl Response- >get Xm Cont ent () ;

Returns the XML response. Thiswill be an object to be determined by implementation.

Will set $doc_errno to one of possibly several error codes to be determined at
implementation if there is a problem processing the returned XML.

8.4 The lacpService Class

The lacpService object describes an |ACP service provided by an application. An array of
lacpService objects is returned by the lacpClient->getCatal og() method. Each object is the
application's description of asingle IACP serviceit offers.

Signature
package lacpService;

Constructor

lacpService

DOC Intranet Architecture 171

$nyl acpServi ce = new | acpServi ce(
string nane,
string description,
string returnType,
string returnbDtd,

array paraneters);

M ethods

getName

string $name = $nyl acpServi ce- >get Nane() ;

Returns the name of the service.

getDescription

string $description = $nyl acpServi ce->get Description();

Returns a description of the service.

getReturnType
string $returnType = $nyl acpServi ce- >get Ret urnType() ;

Returns the content-type of the service. Note that content-type is optional to the catalog
entry. If it is not specified, this method returns null.

getReturnDtd
string $returnDtd = $nyl acpServi ce->get ReturnbDt d() ;

Returns:

The ReturnDTD of the service. Note that thisis the string returned by the catalog: it has
not been checked for existence or validity. Note also that returnDTD is optional to the
catalog. If it is not specified, this method returns null.

DOC Intranet Architecture 172

getParameters

array $paramArray = $nyl acpServi ce- >get Paraneters();

Returns:

The parameters accepted by the service as input. Note that parameters are optional to the
service. If the service does not accept parameters, this method returns null.

DOC Intranet Architecture 173

9Thel ACP Sarver API for PHP

The IACP server APl for PHP is aso in DOCIntranet.inc.

The primary classis lacpHandler. You can use it to get the parameters and relevant headers of
the request, set the authentication scheme and check for authorization, and to return a variety of
failure responses.

9.1 The lacpHandler Class

An lacpHandler object is used to process requests from other applications via IACP. The
following depicts atypical use of an lacpHandler.

$nmyHandl er = new | acpHandl er ();
$myHandl er - >exani neRequest () ;

sw t ch($doc_errno)

{
case SOVE _ERROR
/1 handle it, possibly return fromthis function
br eak;
}

| *
** This app may want to restrict access or custonize response based
** on the identity of the requesting app

*/

$reqglid = $nmyHandl er - >get Requesterlid();

/* We can request paramaters individually by nanme or all at once. */

$parans = $nmyHandl er - >get Paraneters();

DOC Intranet Architecture 174

$reqServi ce = $nmyHandl er - >get Regest edSer vi ce();
if ($reqService == "catal og")
{
/*
** W have decided not to require authentication for the catal og
** service.
*/

$reqgServi ce- >set Aut henti cati onScheme(AUTH_NONE) ;

| *
** Note that nyCatal ogGenerati onMethod sets the response content-type
** to "text/xm".

*/

myCat al ogGener ati onMet hod(...);

return;

| *
** The rest of our services use AUTH | ACP_TI ME_STAMP, so we can check
** aut hentication here rather than individually per service.

*/

$myHandl er - >set Aut henti cati onSchene(AUTH | ACP_TI ME_STAMP) ;

if (!$myHandl er->i sAuthorized())

{

/1 HTTP response code 401

$nyHandl er - >demandAut hentication(); // does not return

return;

DOC Intranet Architecture 175

if ($reqService == "StringServicel")

{
/*
** The catal og service has provided a ReturnType for this service of
** "text/plain". The myStringServicelResponseMet hod should set the
** response content-type to "text/plain".
*/

myStringServi celResponseMet hod(. ..);

return;
}
el seif ($reqService == "Xnl Servi ce2")
{
| *
** The catal og service has provided a ReturnType for this service of
** "text/xml". The myXm Servi ce2ResponseMet hod shoul d set the
** response content-type to "text/xm".
*/
my Xm Ser vi ceResponse2Met hod(...);
return;
}
el se
{

HTTP response code 404

$myHandl er - >r et ur nNot FoundError(); // does not return

DOC Intranet Architecture 176

}
Signature

classlacpHandler;

Constants

AUTH_NONE

Authentication scheme: Instructs the lacpHandler to ignore authentication.

AUTH_BASIC

public static fina int AUTH_BASIC

Authentication scheme: Instructs the lacpHandler to use Basic authentication as described in
[RFC 2617].

AUTH_DIGEST

Authentication scheme: Instructs the lacpHandler to use Digest authentication as described in
[RFC 2617].

AUTH_IACP_SIMPLE

Authentication scheme: Instructs the lacpHandler to use the |ACP authentication as described in
the protocol description. Neither time stamp or single-use techniques are to be employed.

AUTH_IACP_TIME_STAMP

Authentication scheme: Instructs the lacpHandler to include a timestamp in the authentication
nonce and check that each returned nonce is no older than the age set by setMaxNonceAge().

AUTH_IACP_SINGLE_USE

Authentication scheme: Instructs the lacpHandler to keep track of nonces so that it can confirm
that each nonce is used only once. Thisis not likely to be implemented in the IACP version 1.0
library, and may throw an Illegal ArgumentException.

DOC Intranet Architecture 177

AUTH_IACP_SINGLE_USE_TIME_STAMP

Authentication scheme: Combines AUTH_IACP_SINGLE_USE and
AUTH_IACP_TIME_STAMP. Thisis not likely to be implemented in the IACP version 1.0
library, and may throw an Illegal ArgumentException.

Constructor

$nyl acpHandl er = new | acpHandl er ($docDi rectory);

Parameters:

docDirectory - A DocDirectory object.

M ethods

examineRequest

voi d $nyl acpHandl er - >exam neRequest () ;

Causes the lacpHandler to determine that sufficient information about the request is
available to respond to subsequent method calls.

Sets $doc_errno on errors to be determined at implementation.

setM axNonceAge
voi d $nyl acpHandl er - >set MaxNonceAge(i nt age);

Specifies the maximum age of a returned authentication nonce. Meaningful only if use a
time-stamp authentication scheme.

Parameters:

age - The maximum acceptable age of the nonce in seconds. If the parameter is not set, it
defaults to 60.

DOC Intranet Architecture 178

setAuthenticationScheme

voi d $nyl acpHandl er - >set Aut henti cati onScheme(i nt schene);

Specifies the authentication scheme to be enforced by the handler. Default is
AUTH_IACP_TIME_STAMP.

isAuthorized
bool $auth = $nyl acpHandl er->i sAut hori zed();

Indicates that the request meets the requirements of the specified authentication scheme.
At thetimethat it is called, it checks that the provided Authorization passes the currently
specified authentication scheme. For |ACP authorization schemes, this includes
performing asymmetric decryption.

If the current authentication scheme is AUTH_NONE, the method returns true.

If falseis returned, the lacpHandler must provide a response to the requester containing
HTTP response code 401 (Unauthorized) and a WWW-Authenticate header specifying
the Authorization required of the request. To do so, call lacpHandler's

demandA uthentication method.

If aservice requires agreater level of authorization than | ACP authentication provides, it
can use the requester's I1D to decide if or what it should provide in the response. Should
the request fail the application’s requirements even though it provided IACP
authentication, call the lacpHandler's returnNoA ccessError method.

getRequesterlid
string $reqlid = $nyl acpHandl er - >get Requesterlid();

Returns the 11D of the requesting application.

getRequestedService
string $servi ceNanme = $nyl acpHandl er - >get Request edSer vi ce();

Returns the name of the requested service. For instance, if the catalog service is
requested, "catalog".

DOC Intranet Architecture 179

getPar ameter

string $paranval ue = $nyl acpHandl er - >get Par anet er (string paraniNane) ;

Returns the value supplied for the paranName parameter. If the parameter was not
included in the request, returns null.

Parameters:

paramName - The parameter for which avaue is sought.

getParameters

array $parans = $nyl acpHandl er - >get Par anet er s() ;

Returns:

An array containing the parameters supplied by the requester. If no parameters were
supplied by the requester, returns null. The keys of the array are the parameter names.

demandAuthentication

voi d $nyHandl er - >demandAut henti cati on();

Respond to the requester that they are required to authenticate to access the requested
service. Causes the lacpHandler to respond with HTTP response code 401
(Unauthorized) and the appropriate WWW-A uthenticate header given the specified
authentication scheme.

Note that this function exits upon returning the response.

returnNoAccessError
voi d $nyHandl er - >r et ur nNoAccessError();

Respond to requester that they have successfully authenticated, but are not allowed
access to the requested service. lacpHandler responds with HT TP response code 403

(Forbidden) .

DOC Intranet Architecture 180

Note that this function exits upon returning the response.

returnNotFoundError

voi d $nyHandl er - >r et ur nNot FoundError () ;

Respond to requester that the requested service is not available. lacpHandler responds
with HTTP response code 404 (Not Found).

Note that this function exits upon returning the response.

10 References
[RFC 2617] - HTTP Authentication: Basic and Digest Access Authentication

http://www.fags.org/rfcs/rfc2617.html

DOC Intranet Architecture 181

